
66 ||| 	 1556-6072/18©2018ieee	 IEEE vehicular technology magazine | March 2018

widely accepted premise is that complex software
frequently contains bugs that can be remotely
exploited by attackers. When this software is
on an electronic control unit (ECU) in a vehi-

cle, exploitation of these bugs can have life or death
consequences. Since software for vehicles is likely to
proliferate and grow more complex in time, the number
of exploitable vulnerabilities will increase. As a result,
manufacturers are keenly aware of the need to quickly
and efficiently deploy updates so that software vulnera-
bilities can be remedied as soon as possible.

However, existing software-update security systems
are not compromise resilient; if an attacker breaks into

Digital Object Identifier 10.1109/MVT.2017.2778751

Date of publication: 1 February 2018

UPTANE
Security and
Customizability of
Software Updates
for Vehicles

Trishank Karthik Kuppusamy,
Lois Anne DeLong,
and Justin Cappos

A

March 2018 | IEEE vehicular technology magazine	 	 ||| 67

any portion of an automobile’s infrastructure, they could
compromise numerous vehicles. The industry needs to
dynamically choose updates for vehicles based on fresh
information, forcing manufacturers to choose existing
systems that sign updates using a key stored on the serv-
er. Attackers who compromise the repository can abuse
this online key and cause malicious software to be in-
stalled on vehicles.

In this article we discuss Uptane, the first, to our knowl-
edge, compromise-resilient software update security sys-
tem designed specifically for vehicles. It is designed to
make obtaining all the pieces required to control a vehicle
extremely difficult for attackers.

Risks and Benefits
of Connected Cars
Vehicles are being connected to
the Internet on a more frequent
basis, providing owners with
many benefits, e.g., facilitating in-
fotainment systems, updating
navigation maps, and enabling
emergency response systems.
However, the downside of con-
necting vehicles to the Internet is
that software vulnerabilities are
exposed. If these vulnerabilities
are remotely exploited, it could
jeopardize vehicles and prove fa-
tal to passengers and drivers. It is
therefore critical for automobile
manufacturers to deploy software
updates over-the-air (SOTA) as
soon as possible. Using SOTA,
manufacturers can add to and im-
prove on existing features, and,
most importantly, fix software
bugs on ECUs without incurring
the high costs traditionally associ-
ated with a manual recall.

The need for secure SOTA sys-
tems was demonstrated in 2015,
when security researchers re-
motely exploited a Jeep’s software
system by commandeering its

dashboard functions, steer ing,
transmission, and brakes [1]. This

incident illustrates several security is-
sues. Chrysler, the manufacturer of Jeep, was forced to
recall 1.4 million automobiles because presumably
there was no SOTA facility even though the automobiles
were connected to the Internet using a Sprint cellular net-
work. Chrysler sent a Universal Serial Bus (USB) drive
with a software update to every affected owner and ad-
vised them to install it through the vehicle’s dashboard.
Chrysler’s researchers considered several important se-
curity issues.

First, it proves that ECUs are just as vulnerable to
attack by malicious parties as any other smart device.
To combat these security shortcomings, auto manu-
facturers must recognize that they are not immune

Photo: ©istockphoto.com/Sjo; Gear: ©istockphoto.com/ribkhan

68 ||| 		 IEEE vehicular technology magazine | March 2018

to attacks; they must adapt their policies, including
those governing how they address software updates,
accordingly, or face devastating consequences. In ad-
dition to the damage done to their reputations, both
Chrysler and Sprint saw their stock values drop by
roughly 2 and 8%, respectively, after this widely publi-
cized simulated hack [2].

Second, it demonstrates that caution must be exer-
cised when designing a software update system. Ma-
jor repositories or servers used to host and distribute
software updates by companies, including Adobe,
Apache, Debian, Fedora, FreeBSD, Gentoo, GitHub, GNU
Savannah, Linux, Microsoft, npm, Opera, PHP, RedHat,
RubyGems, SourceForge, and WordPress, have been
compromised, some on multiple occasions [3]–[26].
These lapses in security occurred because of the use of
off-the-shelf security solutions such as secure sockets
layer (SSL)/transport layer security (TLS), which are
known to be inadequate against practical threats in this
domain [27], [28].

When attackers compromise a repository, they
also make the signing key for updates vulnerable. If
this happens, the impact can be significant because
attackers can then distribute and install malware on
unsuspecting vehicles. In 2013, an attack exploited
flaws in a SOTA mechanism to launch attacks against
financial and government institutions in South Korea.
Government officials estimated that the attack cost the
economy US$750 billion total [29], [30]. If these attacks
are directed at vehicles, the results could have includ-
ed loss of life.

The third point that Chrysler’s security breach showed
is that unique consideration must be given to any change
in a security system’s design. One such consideration is
the need to achieve both security and customizability of
updates. Another issue is that ECUs differ greatly in terms
of resources, i.e., computing power, memory, and access
to the Internet. While some ECUs are powerful enough
to check a large number of signatures in a certain time
frame, others may only be able to check one signature in
the same amount of time. Finally, a system must also be
flexible enough to be applied to a wide variety of deploy-
ment scenarios.

Collectively, these three points were the inspiration
for and the impetus behind the design of Uptane. Uptane
was designed in collaboration with the manufacturers
and suppliers responsible for 78% of the vehicles on
U.S. roads, as well as with governmental regulators.

It was cooperatively developed by researchers from the
Tandon School of Engineering at New York University
(NYU), the University of Michigan Transportation Re-
search Institute (UMTRI), and the Southwest Research
Institute (SWRI). In January 2017, Uptane was formally
introduced to the automotive community at events in
Ann Arbor, Michigan, and Brooklyn, New York [31], [32].

Since its introduction, Uptane has been implemented
by several automotive suppliers, e.g., Lear Corporation,
OTAinfo, and Advanced Telematic Systems [33], the lat-
ter of which is the first European company to utilize the
technology (and discussions continue with a number of
other manufacturers). The magazine, Popular Science, re-
cently named Uptane one of 2017’s “most important in-
novations in security” [34].

Updating ECU Software
Though an original equipment manufacturer (OEM), e.g.,
Mercedes-Benz or Volkswagen, decides which ECUs
should reside in a vehicle, automotive ECUs are typically
produced by third-party suppliers, such as DENSO or
Rolls-Royce. Suppliers are also responsible for develop-
ing, maintaining, and updating the software for ECUs,
which OEMs distribute.

An OEM uses a repository to distribute software up-
dates to ECUs in the form of images and metadata. An im-
age is an archive of code and/or data that enables an ECU
to function. A metadata file contains information, such as
hash values and lengths, for verifying the authenticity of
an image, as well other metadata files. Figure 1 shows a
signed metadata file. Although it is reasonable to expect
metadata and images to be delivered over-the-air from the
repository to the vehicle, Uptane is designed to be com-
pletely agnostic with respect to the transport mechanism,
i.e., updates may be delivered using a cellular connection,
USB flash drive, or a laptop connected to the on-board di-
agnostics (OBD)-II port.

Ideally, all metadata is signed using offline or private
keys that are not accessible from the repository, so at-
tackers cannot compromise images without being detect-
ed. To the best of our knowledge, OEMs do not typically,
in practice, sign metadata. This indicates that images can
be reflashed to ECUs if: 1) the attackers have a man-in-
the-middle connection to ECUs, and 2) they know the
fixed challenge-response algorithms used to unlock ECUs
[35], [36]. Though manufacturers may believe their fixed
algorithms are exclusive, the automotive community
may, nevertheless find them [35], [36]. For example, until
security researchers exploited a wireless connection to
overwrite software on its ECUs, allowing the research-
ers to remotely obtain physical control of the vehicles,
it appears that Tesla, Inc.’s images were unsigned [37].
However, while it is important to sign metadata, ideally
by using offline keys, in practice, the problem appears to
be more nuanced.

Since software for vehicles is likely to
grow larger and more complex over time,
the number of exploitable vulnerabilities
will likely increase.

March 2018 | IEEE vehicular technology magazine	 	 ||| 69

Limitations of Existing SOTA Systems
The problem with existing SOTA systems is that they are
inadequate when dealing with the operations of the auto-
motive industry. They provide either security or custom-
izability, but they cannot provide both. A secure system
uses an offline key to sign all metadata. Typically, OEMs
would use the Pretty Good Privacy (PGP)/GNU Privacy
Guard (GPG) or RSA cryptosystem for this purpose.
While these systems provide some compromise resil-
ience, the downside is that the OEM loses the ability to
dynamically choose different updates for different vehi-
cles depending on context and fresh information. This is
due to offline keys being required to sign all metadata,
which can become expensive when updates are random
or frequent, thus necessitating human intervention. Sign-
ing with offline keys requires human intervention, which
can become expensive if updates are frequent.

One solution to this might be to sign different updates
for different vehicles ahead of time, given what ECUs
have already been installed on a vehicle; however, this
assumes that there are only a few possibilities for what
ECUs have installed. Another downside is that this sys-
tem provides only a weak form of compromise resilience;
a compromise of the single signing key is enough to en-
able attackers to install malware on all vehicles main-
tained by the OEM.

The second system uses a single online key that is ac-
cessible from the repository. Typically, OEMs would use
the SSL/TLS or Client-Update Protocol transport mecha-
nism for this purpose, where all updates are dynamically
encrypted in transit. The upside is that automated pro-
cesses on the repository can choose different updates for
different vehicles. The drawback is that, if compromised,
attackers can use this online key to install malware on all
vehicles. In this case, the presence of a hardware security
module (HSM) would not help because attackers could use
the HSM to sign new metadata for malicious images, even
if they do not have direct access to the private key itself.

Uptane: Security and Customizability
The auto industry’s need to find an update system that
does not require choosing between security and custom-
izability was the motivation for creating Uptane, the first
software update security system for automobiles that
provides both. The key to its design is the use of two dif-
ferent repositories.

Uptane uses at least six design principles to provide
compromise resilience. The first is a separation of duties,
with different types of metadata being signed by different
roles so the impact of a key compromise will be limited
to only the responsibilities assigned to that role. There
are four top-level roles on a repository, as illustrated in
Figure 2 and summarized in Figure 3. The second prin-
ciple is to require a threshold number m of signatures
from n independent keys to sign a metadata file. This is

an application of the two-man rule: the larger this thresh-
old number, the more difficult it should be for attackers to
compromise keys and sign a new metadata file. The third
principle is implementing a process by which keys are
revoked if they are compromised. Keys can be revoked
either explicitly or implicitly—the former, by publishing
new metadata, and the latter by adding a signed expira-
tion time stamp to a metadata file. The fourth principle is
to further minimize risk by using offline keys for high-val-
ue roles. Using offline keys for the root and targets roles,
for which a compromise could mean the installation of
malicious images, can provide additional security. The
fifth principle is a selective delegation of trust, i.e., devel-
opers are trusted with signing for only a subset of images
so that the key compromise of a single developer does
not affect all ECUs. Delegations are also useful for dis-
tributing, revoking, and replacing public keys belonging
to suppliers and their developers. The sixth principle

{
 “signatures”: [
 {
 “keyid”: “ce3e02e72980b09ca6f5efa68197130b381921e5d0
 675e2e0c8f3c47e0626bba”,
 “method”: “ed25519”,
 “sig”: “9095bf34b0cbf9790465c0956810cb3729bc96beed
 8ee7e42d98997b1e8ec0a6780e57556570687df4a5
 59d563a569258eac15fd9832b2e8e6d048cc32b5f603”
 }
],
 “signed”: {
 “_type”: “Targets”,
 “delegations”: {
 “keys”: {},
 “roles”: []
 },
 “expires”: “2030-01-01T00:00:00Z”,
 “targets”: {
 “supplier-A-ECU-B.img”: {
 “hashes”: {
 “sha256”: “141f740f53781d1ca54b8a50af22cbf74e44c2
 1a998fa2a8a05aaac2c002886b”
 },
 “length”: 28
 }
 },
 “version”: 1
 }
}

Figure 1 A n example of a signed metadata file.

In 2015, security researchers showed how
to remotely exploit Jeeps and commandeer
their dashboard functions, steering,
transmission, and brakes.

70 ||| 		 IEEE vehicular technology magazine | March 2018

is to use a diversity of signing and hashing algorithms,
which allows for surviving a compromise of all but one
of these algorithms. Using these design principles, an
OEM maintains two repositories: one for security and
one for customizability.

The image repository serves images for all ECUs on
vehicles maintained by the OE and holds metadata that
can verify their authenticity. The OE uses offline keys to
sign this metadata. Images are delegated to their respec-
tive tier-one suppliers so that the impact of a key com-
promise is limited to the affected supplier. If a tier-one
supplier does not sign its images, then the OEM signs on
its behalf. This repository provides an immutable source
of information about images that attackers cannot modi-
fy without having compromised offline keys.

The director repository controls the images that
should be installed next on any given ECU. When a ve-
hicle’s software needs to be updated, it first provides the
director repository its vehicle version manifest, or the
signed information about existing images. According to
this manifest, automated processes running the director

repository perform dependency resolution [40], choos-
ing which images should be installed next.

The director repository uses an independent source
of information about which images are available from
the image repository to ensure that compromise of the
image repository does not affect the director repository.
The director repository uses online keys to sign instruc-
tions using the targets, snapshot, and time stamp meta-
data. In addition to the image and director repositories,
the OEM may also maintain a time server since ECUs
typically do not have real-time clocks. Accurate time
stamps help ECUs avoid freeze attacks, where attackers
continually replay previously downloaded metadata.

Conceptually, there are two types of ECUs, one being
more powerful than the other. In this context, powerful is
defined as not only having more speed and/or memory,
but also a possible Internet connection. These powerful
ECUs, also known as primaries, download and verify meta-
data and images before distributing them to secondaries.
Secondaries double-check the metadata and images dis-
tributed by primaries. There are two types of metadata
verification depending on an ECU’s security and cost re-
quirements. With full verification, as displayed in Figure 4,
images chosen for installation by the director repository
are checked to see if they match the corresponding imag-
es available on the repository. This entails checking that
the hashes and sizes of the images in the target’s metadata

Role Responsibilities

Root The root role is the locus of trust. It indicates which keys are authorized for the targets, snapshot, and time stamp
roles. It also lists the keys for the root role itself.

Targets The targets role provides crucial metadata about images, such as their hashes and lengths. This role may delegate
the signing of images to their respective suppliers.

Snapshot The snapshot role indicates the latest versions of all metadata on the repository. This prevents an ECU from
installing an outdated image.

Time Stamp The time stamp role is responsible for indicating if images or metadata have changed.

Figure 3 The list of responsibilities for top-level roles [38], [39].

Time Stamp

Metadata Images
Signs Metadata for

Signs Root Keys for

Delegates Images toRoot

Snapshot Targets

A1

BC

A.Image

C.Image

Signs for Images

A.*

B.*, C.*

*.Image
A2

B.Image

Figure 2 The separation of duties between signing metadata roles [38], [39].

An OEM uses a repository to distribute
software updates to ECUs in the form of
images and signed metadata.

March 2018 | IEEE vehicular technology magazine	 	 ||| 71

signed by the director repository match the hashes and
sizes of the same images in the target’s metadata on the
image repository. To prevent security attacks, primaries
always perform full verification on behalf of secondaries,
while secondaries perform either full or partial verifica-
tion, checking only the signature on the target’s metadata
file from the director repository. This simple security
check is designed for computationally weak ECUs. Safety-
critical ECUs, ones where a compromise can jeopardize
the safety of the vehicle, should use full verification; all
other ECUs should use partial verification. ECUs that per-
form neither full nor partial verification should not be up-
dated via SOTA.

Figure 5 offers a thumbnail sketch of the security ef-
fectiveness of Uptane, based on the type of attack and
the type of ECUs compromised. When there are only
man-in-the-middle attacks, but no key compromise, then
attackers do not pose a serious threat. If the attackers
compromise the director repository, the following two
scenarios are possible.

In the first scenario, where attackers have not compro-
mised primaries, the worst-case scenario would mean that
ECUs are unable to work together due to attackers being
able to control which images are to be installed on which
ECUs. However, this action can be limited by suppliers who
include metadata that prevent ECUs from installing incom-
patible or conflicting images. Regardless, attackers will
not be able to install malicious images because primaries
always perform full verification on behalf of secondaries.

The situation becomes a bit more critical during the
second scenario where attackers have also compromised
primaries. In this case, primaries may no longer be able

to perform full verification on behalf of secondaries, so
it may be possible for malicious images to be installed on
partial verification ECUs. However, in this scenario, at-
tackers would still be unable to install malicious images
on full verification ECUs.

The latter scenario would only be possible under the
following conditions: 1) if attackers compromise the of-
fline keys used by the tier-one supplier who maintains

OEMVehicle

Offline
Keys

Image
Repository

Online
Keys

ECU
Director
Repository

Figure 4 U ptane uses two repositories to provide OEMs with both
security and customizability [38], [39].

MitM
Outside/Inside

Vehicle

MitM + Director Repository Compromise

Primaries Not
Compromised

Primaries
Compromised

Partial
Verification

No Serious
Attacks

May be Able to
Cause ECUs

to Fail to
Interoperate

Can Install
Malware

Full
Verification

Increasing Difficulty for Attackers

Greater
Compromise-Resilience

Mild Serious Critical

Figure 5 A rough security analysis of Uptane, depending on which repositories and ECUs have been compromised [38], [39]. MiTM: Man-
in-the-Middle.

Uptane uses at least six design principles
to provide compromise resilience.

72 ||| 		 IEEE vehicular technology magazine | March 2018

the ECU, and 2) if they upload signed metadata and mali-
cious images to the OEM, who would then update both
the image and director repositories. However, note that if
the OEM verifies new images from suppliers using out-of-
band processes, e.g., a video conference call where hash-
es are verbally verified, then they can detect malicious
images and infer that a key compromise has occurred.

As stated previously, Uptane uses two repositories
to separate security and customizability. It offers basic
security guarantees for all ECUs and greater compro-
mise-resilience for ECUs that can afford additional com-
putation and memory.

Conclusions
Uptane provides a safe software update security strategy
for automobiles that has proven successful in other
domains. We share the automotive industry’s commitment
to creating a product that minimizes safety risk for those
who use it. We recognize that subjecting the system to a
critical, rigorous, and open review has long been the most
reliable way to guarantee its security. Accordingly, after
introducing Uptane in January 2017, we extended an invita-
tion to the security community to find any design flaws
before the black-hat hackers use them against us. This pro-
cess has been underway for more than a year with, to date,
no major flaws reported. Comments about our system may
be left on our Google Docs, and any issues should be
reported by sending pull requests on our GitHub projects,
via our website at https://uptane.github.io.

As we head into our third year of iterative designs and
modifications with the automotive industry, we strongly
believe that Uptane is the most comprehensive and ro-
bust solution to securing SOTA on vehicles. It is our hope
that, as the project continues to advance, others will join
our efforts to solve this problem facing automobiles, as it
is so critical to our national security. Because of this, we
have made Uptane open source, royalty-free, and patent-
unencumbered. The choice now is up to OEMs and sup-
pliers, and we strongly urge them to carefully consider
the security of the software update systems they might
employ. Given the stakes, hoping for the best is not an
acceptable strategy.

Acknowledgments
Uptane is supported by the U.S. Department of Home-
land Security Grants D15PC00239 and D15PC00302. The
views and conclusions contained herein are the authors’
and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either ex
pressed or implied, of the U.S. Department of Homeland

Security or the U.S. government. Uptane is the result of
collaboration between multiple research organizations,
led by Justin Cappos (NYU), Sam Lauzon (UMTRI), and
Cameron Mott (SWRI). We are grateful for the efforts of
Akan Brown (NYU), Sebastien Awwad (NYU), Damon
McCoy (NYU), Russ Bielawski (UMTRI), Sam Weber
(NYU), John Liming (SWRI), and André Weimerskirch
(UMTRI/Lear Corporation). We deeply thank contributors
from various OEMs and suppliers who participated in
our workshops and forums and who helped to iterate
upon and improve Uptane.

Author Information
Trishank Karthik Kuppusamy (trishank@nyu.edu)
received his Ph.D. degree in computer science from the
Tandon School of Engineering at New York University in
2017. In the past, he worked on the research and develop-
ment of The Update Framework ( TUF ), which is being inte-
grated by Haskell, OCaml, Ruby, Rust, and Python, and has
been used in production by LEAP, Flynn, VMware, Kolide,
DigitalOcean, Cloudflare, CoreOS, and Docker. He led the
research efforts for Uptane, a variant of TUF for use with
automobiles. He is currently the chief security solutions
engineer at Datadog.

Lois Anne DeLong (lad278@nyu.edu) received her B.A.
degree in 1977 and her M.A. degree in 2008, both from New
York University. She is a research associate and technical
writer for the Secure Systems Lab at New York University’s
Tandon School of Engineering. She has served as a writer
and editor for technical journals, and has also taught techni-
cal writing and basic composition courses.

Justin Cappos (jcappos@nyu.edu) is an assistant pro-
fessor at the Tandon School of Engineering at New York Uni-
versity. His research interests include improving the
security of real-world systems in a variety of practical appli-
cations. His research has led to the production of widely
used software, including those of Docker, Git, Python, and
most Linux distributions.

References
[1]	 A. Greenberg. (2015, July 24). After Jeep hack, Chrysler recalls 1.4M vehicles

for bug fix. Wired. [Online]. Available: https://www.wired.com/2015/
07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/

[2]	 D. Goldman. (2015, July 24). Chrysler recalls 1.4 million hackable
cars. CNN. [Online]. Available: http://money.cnn.com/2015/07/24/
technology/chrysler-hack-recall/

[3]	 B. Arkin. (2012, Sept. 12). Adobe to revoke code signing certificate.
Adobe. [Online]. Available: https://blogs.adobe.com/conversations/
2012/09/adobe-to-revoke-code-signing-certificate.html

[4]	 Apache Infrastructure Team. (2009, Aug. 28). Apache.org incident
report for 8/28/2009. [Online]. Available: https://blogs.apache.org/
infra/entry/apache_org_downtime_report

[5]	 Apache Infrastructure Team. (2010, Apr. 09). Apache.org incident
report for 04/09/2010. [Online]. Available: https://blogs.apache.org/
infra/entry/apache_org_04_09_2010

[6]	 Debian. (2003, Dec. 2). Debian investigation report after server
compromises. Debian. [Online]. Available: https://www.debian.org/
News/2003/20031202

[7]	 Debian. (2012, July 25). Security breach on the Debian wiki 2012-07-
25. Debian. [Online]. Available: https://wiki.debian.org/DebianWiki/
SecurityIncident2012

Uptane uses two repositories to separate
security and customizability.

March 2018 | IEEE vehicular technology magazine	 	 ||| 73

[8]	 P. W. Frields. (2008, Aug. 8). Infrastructure report, 2008-08-22 UTC
1200. [Online]. Available: https://www.redhat.com/archives/fedora-
announce-list/2008-August/msg00012.html

[9]	 J. K. Smith. (2011, Jan. 23) Security incident on Fedora infrastruc-
ture on 23 Jan 2011. Fedora Project. [Online]. Available: https://lists
.fedoraproject.org/pipermail/announce/2011-January/002911.html

[10]	The FreeBSD Project. (2012, Nov. 27). FreeBSD.org intrusion an-
nounced November 17th 2012. Free BSD. [Online]. Available: http://
www.freebsd.org/news/2012-compromise.html

[11]	Gentoo Linux. (2003, Dec. 2) Rotation server compromised. Gentoo.
[Online]. Available: https://forums.gentoo.org/viewtopic.php

[12]	GitHub, Inc. (2012, Mar. 4). Public key security vulnerability and
mitigation. GitHub, Inc. [Online]. Available: https://github.com/
blog/1068-public-key-security-vulnerability-and-mitigation

[13]	B. M. Kuhn. (2003, Dec. 23). IMPORTANT: Information regarding sa-
vannah restoration for all users. [Online]. Available: https://savannah
.gnu.org/forum/forum.php?forum_id=2752

[14]	GNU Savannah. Compromise2010. Free Software Foundation. [Online].
Available: https://savannah.gnu.org/maintenance/Compromise2010/

[15]	L. McVoy. (2003, Nov. 5). BK2CVS problem. [Online]. Available:
http://lkml.iu.edu//hypermail/linux/kernel/0311.0/0621.html

[16]	J. Corbet. (2011, Aug. 31). The cracking of Kernel.org. The Force
Field. [Online]. Available: https://www.linuxfoundation.org/blog/
thecrackingofkernelorg/

[17]	Microsoft Corporation. (2012, June 6). Flame malware collision at-
tack explained. Microsoft Corporation. [Online]. Available: https://
blogs.technet.microsoft.com/srd/2012/06/06/flame-malware-
collision-attack-explained/

[18]	L. Voss. (2014, Mar. 21). Newly Paranoid Maintainers. NPMJS. [On-
line]. Available: http://blog.npmjs.org/post/80277229932/newly-
paranoid-maintainers

[19]	R. Naraine. (2013, June 26). Opera software hit by ‘Infrastructure At-
tack;’ Malware signed with stolen cert. Security Week. [Online]. Avail-
able: http://www.securityweek.com/opera-software-hit-infrastructure-
attack-malware-signed-stolen-cert

[20]	H. Magnusson. (2010, Dec. 24). The PHP project and code review.
bjori doesn’t blog. [Online]. Available: https://bjori.blogspot
.com/2010/12/php-project-and-code-review.html

[21]	PHP. (2011, Mar. 19). Php.net security notice. PHP. [Online]. Avail-
able: https://secure.php.net/archive/2011.php#id2011-03-19-1

[22]	PHP. (2013, Oct. 24). A further update on php.net. PHP. [Online].
Available: https://secure.php.net/archive/2013.php#id2013-10-24-2

[23]	Red Hat, Inc. (2008, Aug. 22). Infrastructure report, 2008-08-22
UTC 1200. [Online]. Available: https://rhn.redhat.com/errata/RHSA-
2008-0855.html

[24]	RubyGems. (2013, Jan. 13). Data verification. RubyGems. [Online].
Available: http://blog.rubygems.org/2013/01/31/data-verification.html

[25]	SourceForge. (2012, Sept. 25). PhpMyAdmin corrupted copy on
Korean mirror server. SourceForge. [Online]. Available: https://
sourceforge.net/blog/phpmyadmin-back-door/

[26]	M. Mullenweg. (2011, June 11). Passwords reset. Word Press. [On-
line]. Available: https://wordpress.org/news/2011/06/passwords-reset/

[27]	T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos, “Diplomat:
Using delegations to protect community repositories,” in Proc. 13th
USENIX Symp. Networked Systems Design Implementation (NSDI ‘16),
Santa Clara, CA, 2016, pp. 567–581.

[28]	T. K. Kuppusamy, V. Diaz, and J. Cappos, “Mercury: Bandwidth-
effective prevention of rollback attacks against community reposi-
tories,” in Proc. 2017 USENIX Annu. Technical Conf. (ATC ‘17), Santa
Clara, CA, pp. 673–688.

[29]	A. Hern. (2013, Oct. 16). North Korean ‘cyberwarfare’ said to have
cost South Korea £500m. The Guardian. [Online]. Available: https://
www.theguardian.com/world/2013/oct/16/north-korean-cyber-
warfare-south-korea

[30]	Wolfram Alpha, LLC. (2013, Oct.). 470m gbp to usd in Oct. 2013. Wol-
fram Alpha. [Online]. Available: https://www.wolframalpha.com/
input/?i=470m+gbp+to+usd+in+oct+2013

[31]	J. Detsch. (2017, Jan. 18). Are software updates key to stopping
criminal car hacks? Christian Science Monitor. [Online]. Available:
https://www.csmonitor.com/World/Passcode/2017/0118/Are-soft-
ware-updates-key-to-stopping-criminal-car-hacks

[32]	L. Mathews. (2017, Jan. 19). Uptane will protect your connected car
from hackers. Forbes. [Online]. Available: https://www.forbes.com/
sites/leemathews/2017/01/19/uptane-will-protect-your-connected-
car-from-hackers/#7a532f1019be

[33]	E. Eitel. (2017, June 16). ATS is integrating the Uptane security
framework for over-the-air software updates to connected vehi-
cles. Advanced Telematic Systems. [Online]. Available: https://www
.advancedtelematic.com/en/press-releases/ats-is-integrating-the-
uptane-security-framework-for-over-the-air-software-updates-to-
connected-vehicles.html

[34]	K. D. Atherton and R. Feltman. (2017, Oct. 17). The year’s most im-
portant innovations in security. Popular Sci. Mag. [Online]. Available:
https://www.popsci.com/top-security-innovations-2017

[35]	K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checko-
way, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Sav-
age, “Experimental security analysis of a modern automobile,”
in Proc. 31st IEEE Symp. Security Privacy, Oakland, CA, 2010, pp.
447–462.

[36]	S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Sav-
age, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehen-
sive experimental analyses of automotive attack surfaces,” in Proc.
20th USENIX Security Symp., San Francisco, CA, 2011.

[37]	A. Greenberg. (2016, Sept. 27). Tesla responds to Chinese hack with
a major security upgrade. Wired. [Online]. Available: https://www
.wired.com/2016/09/tesla-responds-chinese-hack-major-security-
upgrade/

[38]	T. K. Kuppusamy, A. Brown, S. Awwad, D. McCoy, R. Bielawski,
S. Weber, J. Liming, C. Mott, S. Lauzon, A. Weimerskirch, and J. Cap-
pos. (2017). SOTA #5: Uptane design overview. Tandon School of
Engineering, New York University. [Online]. Available: https://docs
.google.com/presentation/d/1R3jSDcqbqUIwJgbOLOKwHReoy2wnj
8GrXlKCdcLNXAA/edit?usp=sharing

[39]	T. K. Kuppusamy, L. A. DeLong, and J. Cappos. (2017). Securing soft-
ware updates for automotives using Uptane. [Online]. 42(2), pp. 63–67.
Available: https://ssl.engineering.nyu.edu/papers/kuppusamy_
login_2017.pdf

[40]	D. Burrows. (2005). Modelling and resolving software dependen-
cies. Debian. [Online]. Available: https://web.archive.org/web/*/
https://people.debian.org/~dburrows/model.pdf

�

