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widely accepted premise is that complex software 
frequently contains bugs that can be remotely 
exploited by attackers. When this software is 
on an electronic control unit (ECU) in a vehi-

cle, exploitation of these bugs can have life or death 
consequences. Since software for vehicles is likely to 
proliferate and grow more complex in time, the number 
of exploitable vulnerabilities will increase. As a result, 
manufacturers are keenly aware of the need to quickly 
and efficiently deploy updates so that software vulnera-
bilities can be remedied as soon as possible.

However, existing software-update security systems 
are not compromise resilient; if an attacker breaks into 
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any portion of an automobile’s infrastructure, they could 
compromise numerous vehicles. The industry needs to 
dynamically choose updates for vehicles based on fresh 
information, forcing manufacturers to choose existing 
systems that sign updates using a key stored on the serv-
er. Attackers who compromise the repository can abuse 
this online key and cause malicious software to be in-
stalled on vehicles.

In this article we discuss Uptane, the first, to our knowl-
edge, compromise-resilient software update security sys-
tem designed specifically for vehicles. It is designed to 
make obtaining all the pieces required to control a vehicle 
extremely difficult for attackers.

Risks and Benefits  
of Connected Cars
Vehicles are being connected to 
the Internet on a more frequent 
basis, providing owners with 
many benefits, e.g., facilitating in-
fotainment systems, updating 
navigation maps, and enabling 
emergency response systems. 
However, the downside of con-
necting vehicles to the Internet is 
that software vulnerabilities are 
exposed. If these vulnerabilities 
are remotely exploited, it could 
jeopardize vehicles and prove fa-
tal to passengers and drivers. It is 
therefore critical for automobile 
manufacturers to deploy software 
updates over-the-air (SOTA) as 
soon as possible. Using SOTA, 
manufacturers can add to and im-
prove on existing features, and, 
most importantly, fix software 
bugs on ECUs without incurring 
the high costs traditionally associ-
ated with a manual recall.

The need for secure SOTA sys-
tems was demonstrated in 2015, 
when security researchers re-
motely exploited a Jeep’s software 
system by commandeering its 

dashboard functions, steer ing, 
transmission, and brakes [1]. This 

incident illustrates several security is-
sues. Chrysler, the manufacturer of Jeep, was forced to 
recall 1.4 million automobiles because presumably 
there was no SOTA facility even though the automobiles 
were connected to the Internet using a Sprint cellular net-
work. Chrysler sent a Universal Serial Bus (USB) drive 
with a software update to every affected owner and ad-
vised them to install it through the vehicle’s dashboard. 
Chrysler’s researchers considered several important se-
curity issues.

First, it proves that ECUs are just as vulnerable to 
attack by malicious parties as any other smart device. 
To combat these security shortcomings, auto manu-
facturers must recognize that they are not immune 
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to attacks; they must adapt their policies, including 
those governing how they address software updates, 
accordingly, or face devastating consequences. In ad-
dition to the damage done to their reputations, both 
Chrysler and Sprint saw their stock values drop by 
roughly 2 and 8%, respectively, after this widely publi-
cized simulated hack [2].

Second, it demonstrates that caution must be exer-
cised when designing a software update system. Ma-
jor repositories or servers used to host and distribute 
software updates by companies, including Adobe, 
Apache, Debian, Fedora, FreeBSD, Gentoo, GitHub, GNU 
Savannah, Linux, Microsoft, npm, Opera, PHP, RedHat, 
RubyGems, SourceForge, and WordPress, have been 
compromised, some on multiple occasions [3]–[26]. 
These lapses in security occurred because of the use of 
off-the-shelf security solutions such as secure sockets 
layer (SSL)/transport layer security (TLS), which are 
known to be inadequate against practical threats in this 
domain [27], [28].

When attackers compromise a repository, they 
also make the signing key for updates vulnerable. If 
this happens, the impact can be significant because 
attackers can then distribute and install malware on 
unsuspecting vehicles. In 2013, an attack exploited 
flaws in a SOTA mechanism to launch attacks against 
financial and government institutions in South Korea. 
Government officials estimated that the attack cost the 
economy US$750 billion total [29], [30]. If these attacks 
are directed at vehicles, the results could have includ-
ed loss of life.

The third point that Chrysler’s security breach showed 
is that unique consideration must be given to any change 
in a security system’s design. One such consideration is 
the need to achieve both security and customizability of 
updates. Another issue is that ECUs differ greatly in terms 
of resources, i.e., computing power, memory, and access 
to the Internet. While some ECUs are powerful enough 
to check a large number of signatures in a certain time 
frame, others may only be able to check one signature in 
the same amount of time. Finally, a system must also be 
flexible enough to be applied to a wide variety of deploy-
ment scenarios.

Collectively, these three points were the inspiration 
for and the impetus behind the design of Uptane. Uptane 
was designed in collaboration with the manufacturers 
and suppliers responsible for 78% of the vehicles on 
U.S. roads, as well as with governmental regulators. 

It was cooperatively developed by researchers from the 
Tandon School of Engineering at New York University 
(NYU), the University of Michigan Transportation Re-
search Institute (UMTRI), and the Southwest Research 
Institute (SWRI). In January 2017, Uptane was formally 
introduced to the automotive community at events in 
Ann Arbor, Michigan, and Brooklyn, New York [31], [32].

Since its introduction, Uptane has been implemented 
by several automotive suppliers, e.g., Lear Corporation, 
OTAinfo, and Advanced Telematic Systems [33], the lat-
ter of which is the first European company to utilize the 
technology (and discussions continue with a number of 
other manufacturers). The magazine, Popular Science, re-
cently named Uptane one of 2017’s “most important in-
novations in security” [34].

Updating ECU Software
Though an original equipment manufacturer (OEM), e.g., 
Mercedes-Benz or Volkswagen, decides which ECUs 
should reside in a vehicle, automotive ECUs are typically 
produced by third-party suppliers, such as DENSO or 
Rolls-Royce. Suppliers are also responsible for develop-
ing, maintaining, and updating the software for ECUs, 
which OEMs distribute.

An OEM uses a repository to distribute software up-
dates to ECUs in the form of images and metadata. An im-
age is an archive of code and/or data that enables an ECU 
to function. A metadata file contains information, such as 
hash values and lengths, for verifying the authenticity of 
an image, as well other metadata files. Figure 1 shows a 
signed metadata file. Although it is reasonable to expect 
metadata and images to be delivered over-the-air from the 
repository to the vehicle, Uptane is designed to be com-
pletely agnostic with respect to the transport mechanism, 
i.e., updates may be delivered using a cellular connection, 
USB flash drive, or a laptop connected to the on-board di-
agnostics (OBD)-II port.

Ideally, all metadata is signed using offline or private 
keys that are not accessible from the repository, so at-
tackers cannot compromise images without being detect-
ed. To the best of our knowledge, OEMs do not typically, 
in practice, sign metadata. This indicates that images can 
be reflashed to ECUs if: 1) the attackers have a man-in-
the-middle connection to ECUs, and 2) they know the 
fixed challenge-response algorithms used to unlock ECUs 
[35], [36]. Though manufacturers may believe their fixed 
algorithms are exclusive, the automotive community 
may, nevertheless find them [35], [36]. For example, until 
security researchers exploited a wireless connection to 
overwrite software on its ECUs, allowing the research-
ers to remotely obtain physical control of the vehicles, 
it appears that Tesla, Inc.’s images were unsigned [37]. 
However, while it is important to sign metadata, ideally 
by using offline keys, in practice, the problem appears to 
be more nuanced.

Since software for vehicles is likely to 
grow larger and more complex over time, 
the number of exploitable vulnerabilities 
will likely increase. 
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Limitations of Existing SOTA Systems
The problem with existing SOTA systems is that they are 
inadequate when dealing with the operations of the auto-
motive industry. They provide either security or custom-
izability, but they cannot provide both. A secure system 
uses an offline key to sign all metadata. Typically, OEMs 
would use the Pretty Good Privacy (PGP)/GNU Privacy 
Guard (GPG) or RSA cryptosystem for this purpose. 
While these systems provide some compromise resil-
ience, the downside is that the OEM loses the ability to 
dynamically choose different updates for different vehi-
cles depending on context and fresh information. This is 
due to offline keys being required to sign all metadata, 
which can become expensive when updates are random 
or frequent, thus necessitating human intervention. Sign-
ing with offline keys requires human intervention, which 
can become expensive if updates are frequent.

One solution to this might be to sign different updates 
for different vehicles ahead of time, given what ECUs 
have already been installed on a vehicle; however, this 
assumes that there are only a few possibilities for what 
ECUs have installed. Another downside is that this sys-
tem provides only a weak form of compromise resilience; 
a compromise of the single signing key is enough to en-
able attackers to install malware on all vehicles main-
tained by the OEM.

The second system uses a single online key that is ac-
cessible from the repository. Typically, OEMs would use 
the SSL/TLS or Client-Update Protocol transport mecha-
nism for this purpose, where all updates are dynamically 
encrypted in transit. The upside is that automated pro-
cesses on the repository can choose different updates for 
different vehicles. The drawback is that, if compromised, 
attackers can use this online key to install malware on all 
vehicles. In this case, the presence of a hardware security 
module (HSM) would not help because attackers could use 
the HSM to sign new metadata for malicious images, even 
if they do not have direct access to the private key itself.

Uptane: Security and Customizability
The auto industry’s need to find an update system that 
does not require choosing between security and custom-
izability was the motivation for creating Uptane, the first 
software update security system for automobiles that 
provides both. The key to its design is the use of two dif-
ferent repositories.

Uptane uses at least six design principles to provide 
compromise resilience. The first is a separation of duties, 
with different types of metadata being signed by different 
roles so the impact of a key compromise will be limited 
to only the responsibilities assigned to that role. There 
are four top-level roles on a repository, as illustrated in 
Figure 2 and summarized in Figure 3. The second prin-
ciple is to require a threshold number m of signatures 
from n independent keys to sign a metadata file. This is 

an application of the two-man rule: the larger this thresh-
old number, the more difficult it should be for attackers to 
compromise keys and sign a new metadata file. The third 
principle is implementing a process by which keys are 
revoked if they are compromised. Keys can be revoked 
either explicitly or implicitly—the former, by publishing 
new metadata, and the latter by adding a signed expira-
tion time stamp to a metadata file. The fourth principle is 
to further minimize risk by using offline keys for high-val-
ue roles. Using offline keys for the root and targets roles, 
for which a compromise could mean the installation of 
malicious images, can provide additional security. The 
fifth principle is a selective delegation of trust, i.e., devel-
opers are trusted with signing for only a subset of images 
so that the key compromise of a single developer does 
not affect all ECUs. Delegations are also useful for dis-
tributing, revoking, and replacing public keys belonging 
to suppliers and their developers. The sixth principle 

{
 “signatures”: [
  {
   “keyid”: “ce3e02e72980b09ca6f5efa68197130b381921e5d0
                   675e2e0c8f3c47e0626bba”, 
   “method”: “ed25519”, 
   “sig”: “9095bf34b0cbf9790465c0956810cb3729bc96beed
              8ee7e42d98997b1e8ec0a6780e57556570687df4a5
              59d563a569258eac15fd9832b2e8e6d048cc32b5f603”
  }
 ], 
 “signed”: {
  “_type”: “Targets”, 
  “delegations”: {
   “keys”: {}, 
   “roles”: []
  }, 
  “expires”: “2030-01-01T00:00:00Z”, 
  “targets”: {
   “supplier-A-ECU-B.img”: {
    “hashes”: {
     “sha256”: “141f740f53781d1ca54b8a50af22cbf74e44c2
                       1a998fa2a8a05aaac2c002886b”
    }, 
    “length”: 28
   }
  }, 
  “version”: 1
 }
}

Figure 1 A n example of a signed metadata file.

In 2015, security researchers showed how 
to remotely exploit Jeeps and commandeer 
their dashboard functions, steering, 
transmission, and brakes.
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is to use a diversity of signing and hashing algorithms, 
which allows for surviving a compromise of all but one 
of these algorithms. Using these design principles, an 
OEM maintains two repositories: one for security and 
one for customizability.

The image repository serves images for all ECUs on 
vehicles maintained by the OE and holds metadata that 
can verify their authenticity. The OE uses offline keys to 
sign this metadata. Images are delegated to their respec-
tive tier-one suppliers so that the impact of a key com-
promise is limited to the affected supplier. If a tier-one 
supplier does not sign its images, then the OEM signs on 
its behalf. This repository provides an immutable source 
of information about images that attackers cannot modi-
fy without having compromised offline keys.

The director repository controls the images that 
should be installed next on any given ECU. When a ve-
hicle’s software needs to be updated, it first provides the 
director repository its vehicle version manifest, or the 
signed information about existing images. According to 
this manifest, automated processes running the director 

repository perform dependency resolution [40], choos-
ing which images should be installed next.

The director repository uses an independent source 
of information about which images are available from 
the image repository to ensure that compromise of the 
image repository does not affect the director repository. 
The director repository uses online keys to sign instruc-
tions using the targets, snapshot, and time stamp meta-
data. In addition to the image and director repositories, 
the OEM may also maintain a time server since ECUs 
typically do not have real-time clocks. Accurate time 
stamps help ECUs avoid freeze attacks, where attackers 
continually replay previously downloaded metadata.

Conceptually, there are two types of ECUs, one being 
more powerful than the other. In this context, powerful is 
defined as not only having more speed and/or memory, 
but also a possible Internet connection. These powerful 
ECUs, also known as primaries, download and verify meta-
data and images before distributing them to secondaries. 
Secondaries double-check the metadata and images dis-
tributed by primaries. There are two types of metadata 
verification depending on an ECU’s security and cost re-
quirements. With full verification, as displayed in Figure 4, 
images chosen for installation by the director repository 
are checked to see if they match the corresponding imag-
es available on the repository. This entails checking that 
the hashes and sizes of the images in the target’s metadata 

Role Responsibilities

Root The root role is the locus of trust. It indicates which keys are authorized for the targets, snapshot, and time stamp
roles. It also lists the keys for the root role itself. 

Targets The targets role provides crucial metadata about images, such as their hashes and lengths. This role may delegate
the signing of images to their respective suppliers.

Snapshot The snapshot role indicates the latest versions of all metadata on the repository. This prevents an ECU from
installing an outdated image.

Time Stamp The time stamp role is responsible for indicating if images or metadata have changed.

Figure 3 The list of responsibilities for top-level roles [38], [39].

Time Stamp

Metadata Images
Signs Metadata for

Signs Root Keys for

Delegates Images toRoot

Snapshot Targets

A1

BC

A.Image

C.Image

Signs for Images

A.*

B.*, C.*

*.Image
A2

B.Image

Figure 2 The separation of duties between signing metadata roles [38], [39].

An OEM uses a repository to distribute 
software updates to ECUs in the form of 
images and signed metadata.
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signed by the director repository match the hashes and 
sizes of the same images in the target’s metadata on the 
image repository. To prevent security attacks, primaries 
always perform full verification on behalf of secondaries, 
while secondaries perform either full or partial verifica-
tion, checking only the signature on the target’s metadata 
file from the director repository. This simple security 
check is designed for computationally weak ECUs. Safety-
critical ECUs, ones where a compromise can jeopardize 
the safety of the vehicle, should use full verification; all 
other ECUs should use partial verification. ECUs that per-
form neither full nor partial verification should not be up-
dated via SOTA.

Figure 5 offers a thumbnail sketch of the security ef-
fectiveness of Uptane, based on the type of attack and 
the type of ECUs compromised. When there are only 
man-in-the-middle attacks, but no key compromise, then 
attackers do not pose a serious threat. If the attackers 
compromise the director repository, the following two 
scenarios are possible.

In the first scenario, where attackers have not compro-
mised primaries, the worst-case scenario would mean that 
ECUs are unable to work together due to attackers being 
able to control which images are to be installed on which 
ECUs. However, this action can be limited by suppliers who 
include metadata that prevent ECUs from installing incom-
patible or conflicting images. Regardless, attackers will 
not be able to install malicious images because primaries 
always perform full verification on behalf of secondaries.

The situation becomes a bit more critical during the 
second scenario where attackers have also compromised 
primaries. In this case, primaries may no longer be able 

to perform full verification on behalf of secondaries, so 
it may be possible for malicious images to be installed on 
partial verification ECUs. However, in this scenario, at-
tackers would still be unable to install malicious images 
on full verification ECUs.

The latter scenario would only be possible under the 
following conditions: 1) if attackers compromise the of-
fline keys used by the tier-one supplier who maintains 

OEMVehicle

Offline
Keys

Image
Repository

Online
Keys

ECU
Director
Repository

Figure 4 U ptane uses two repositories to provide OEMs with both 
security and customizability [38], [39].
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Figure 5 A  rough security analysis of Uptane, depending on which repositories and ECUs have been compromised [38], [39]. MiTM: Man-
in-the-Middle.

Uptane uses at least six design principles 
to provide compromise resilience.
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the ECU, and 2) if they upload signed metadata and mali-
cious images to the OEM, who would then update both 
the image and director repositories. However, note that if 
the OEM verifies new images from suppliers using out-of-
band processes, e.g., a video conference call where hash-
es are verbally verified, then they can detect malicious 
images and infer that a key compromise has occurred.

As stated previously, Uptane uses two repositories 
to separate security and customizability. It offers basic 
security guarantees for all ECUs and greater compro-
mise-resilience for ECUs that can afford additional com-
putation and memory.

Conclusions
Uptane provides a safe software update security strategy 
for automobiles that has proven successful in other 
domains. We share the automotive industry’s commitment 
to creating a product that minimizes safety risk for those 
who use it. We recognize that subjecting the system to a 
critical, rigorous, and open review has long been the most 
reliable way to guarantee its security. Accordingly, after 
introducing Uptane in January 2017, we extended an invita-
tion to the security community to find any design flaws 
before the black-hat hackers use them against us. This pro-
cess has been underway for more than a year with, to date, 
no major flaws reported. Comments about our system may 
be left on our Google Docs, and any issues should be 
reported by sending pull requests on our GitHub projects, 
via our website at https://uptane.github.io.

As we head into our third year of iterative designs and 
modifications with the automotive industry, we strongly 
believe that Uptane is the most comprehensive and ro-
bust solution to securing SOTA on vehicles. It is our hope 
that, as the project continues to advance, others will join 
our efforts to solve this problem facing automobiles, as it 
is so critical to our national security. Because of this, we 
have made Uptane open source, royalty-free, and patent-
unencumbered. The choice now is up to OEMs and sup-
pliers, and we strongly urge them to carefully consider 
the security of the software update systems they might 
employ. Given the stakes, hoping for the best is not an 
acceptable strategy.
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