
Uptane: Securing Software Updates for Automobiles∗

Trishank Karthik
Kuppusamy

NYU Tandon School of
Engineering

trishank@nyu.edu

Akan Brown
NYU Tandon School of

Engineering
akan.brown@nyu.edu

Sebastien Awwad
NYU Tandon School of

Engineering
sebastien.awwad@nyu.edu

Damon McCoy
NYU Tandon School of

Engineering
mccoy@nyu.edu

Russ Bielawski
University of Michigan
jbielaws@umich.edu

Cameron Mott
Southwest Research Institute

cameron.mott@swri.org

Sam Lauzon
University of Michigan
slauzon@umich.edu

André Weimerskirch†
University of Michigan,

Lear Corporation
aweimerskirch@lear.com

Justin Cappos
NYU Tandon School of

Engineering
jcappos@nyu.edu

ABSTRACT
Software update systems for automobiles can deliver significant

benefits, but, if not implemented carefully, they could potentially
incur serious security vulnerabilities. Previous solutions for secur-
ing software updates consider standard attacks and deploy widely
understood security mechanisms, such as digital signatures for the
software updates, and hardware security modules (HSM) to sign
software updates. However, no existing solution considers more
advanced security objectives, such as resilience against a reposi-
tory compromise, or freeze attacks to the vehicle’s update mech-
anism, or a compromise at a supplier’s site. Solutions developed
for the PC world do not generalize to automobiles for two reasons:
first, they do not solve problems that are unique to the automo-
tive industry (e.g., that there are many different types of comput-
ers to be updated on a vehicle), and second, they do not address
security attacks that can cause a vehicle to fail (e.g. a man-in-the-
middle attack without compromising any signing key) or that can
cause a vehicle to become unsafe. In this paper, we present Uptane,
the first software update framework for automobiles that counters
a comprehensive array of security attacks, and is resilient to partial
compromises. Uptane adds strategic features to the state-of-the-art
software update framework, TUF, in order to address automotive-
specific vulnerabilities and limitations. Uptane is flexible and easy
to adopt, and its design details were developed together with the
main automotive industry stakeholders in the USA.

1 Introduction
The vulnerabilities of software update systems pose a major se-

curity risk to modern computers [6, 10, 23]. Software updaters are
often inadequately protected, leading to substantial damage. For
example, in 2014, South Korean banks and media companies were
attacked causing 756 million dollars in damages [7]. On the flip
side of the coin, software repositories that host software updates
have also been compromised. Software repositories run by major
organizations such as Adobe, Apache, Debian, Fedora, FreeBSD,
Gentoo, GitHub, GNU Savannah, Linux, Microsoft, npm, Opera,
PHP, RedHat, RubyGems, SourceForge, and WordPress reposito-
ries have all been compromised at least once [3–5,13–19,21,22,24,

*This paper is included in the 14th escar Europe 2016.
†Work done while at the University of Michigan.

26,27,29–31,33–37,39]. In one such case, a compromised Source-
Forge mirror distributed a malicious version of phpMyAdmin, a
popular database administration software [33]. The modified ver-
sion allowed attackers to gain system access and remotely execute
PHP code on servers that installed the software.

Automobiles introduced software updates more than a decade
ago, and today many electronic components in a vehicle can be up-
dated by an automotive technician with a proper tool. However,
available update mechanisms played a crucial role in a variety of
published automotive related hacks, such as the recent study by
Miller & Valasek [28] as well as Thuen’s study of an insurance
dongle [38]. It is easy to recognize that software updates over-
the-air (OTA) for vehicles will become a standard operation, since
it enables new business models, and the seamless addition of new
features, as well as fixing safety and security flaws. The cost of
a vulnerable update mechanism is endlessly higher than in the PC
world since a vulnerability can potentially impact the vehicle’s per-
formance.

Even when skilled developers attempt to address flaws in soft-
ware update systems, it is common for them to make fatal security
errors [10]. As a result, an attacker can cause a huge amount of
damage, as seen from the examples cited earlier. While the first
compromise-resilient solutions [25] are currently being deployed
in practice, these existing solutions do not apply well to automo-
biles because of differences in the operational model (e.g. that
there are many different types of computers to be updated on a
vehicle). Previous solutions fail to address security attacks that can
cause a vehicle to fail even if attackers can perform only man-in-
the-middle-attacks, and have not compromised any signing key.

This work presents the design of Uptane, a novel and practical
software update framework for automobiles. To the best of our
knowledge, Uptane is the first software update framework for au-
tomobiles that addresses a comprehensive and broad threat model
(Section 5). Our work enhances the security of previous update
systems by adding and validating new types of signed metadata to
improve resilience to attacks. Since different automobile manufac-
turers and tier-1 suppliers have their own development and deploy-
ment infrastructure, Uptane does not prescribe a rigid, one-size-fits-
all solution. Instead, we provide a flexible framework that enables
different parties to configure the provided security benefits to their
needs and environment.

To build Uptane, we have devised new design features that re-
tain strong security guarantees even in the face of compromises of
parts of the system. Uptane includes new features beyond the stan-
dard mechanisms to secure vehicular software updates with little-
to-no detriment to usability for automobile manufacturer. These
features are: using additional storage to recover from attacks where
the software on an ECU has been overwritten with incorrect data;
broadcasting metadata to prevent attacks where different ECUs are
shown different versions of metadata at the same time; using a ve-
hicle version manifest, or information signed by every ECU about
what it has installed, to detect attacks where ECUs have installed
versions of software that may not work together; and using a time
server to limit attacks where ECUs are indefinitely held back from
the latest updates.

Our contributions are as follows:

• We present a comprehensive and broad threat model for software
updates on automobiles (Section 3).

• We discuss previous solutions for building compromise-resilient
software update systems, with a focus on why they do not ade-
quately address the threat model for automobiles (Section 4).

• We present Uptane, a practical software update framework for
automobiles that adds new design features to solve problems as-
sociated with previous solutions.

Maybe most important, we regularly present our design to the
major automotive industry stakeholders in the USA to ensure that
the design is reasonable and ready for deployment. More informa-
tion about our Uptane industry effort can be found at [1, 2].

2 Background
Uptane adapts proven strategies used in securing updates for

software repositories to meet the unique specifications of comput-
ing devices on vehicles. In order to understand these adapted strate-
gies, it is important to understand why updating software on au-
tomobiles is a special challenge, and why the proposed strategies
have proven so effective in other applications.
2.1 Automobiles

A modern vehicle consists of mechanical parts (e.g., engine and
brakes) that are controlled via software on microcomputers called
Electronic Control Units (ECUs). These units are responsible for
executing specific functions, from tightening a seat belt during an
accident to adjusting a passenger side mirror, and are distributed
throughout the vehicle. A number of ECUs, such as the telematics
unit, also have the ability to transmit and receive information from
the outside world. Different network segments can be connected
through gateway ECUs, such as the body control module (which
may connect, for example, lights to switches).

ECUs may reside on different network segments, or buses, within
the same vehicle. Figure 1 illustrates a hypothetical example where
the telematics unit, engine, and diagnostics ECUs reside on the
high-speed (and more expensive) Controller Area Network (CAN)
bus, and the side windows, door locks, and power windows ECUs
reside on the low-speed (and less expensive) Local Interconnect
(LIN) bus. Other bus types include MOST, FlexRay, Automotive
Ethernet, and CAN-FD. The LIN bus has a single master, up to
16 slaves, and allows speeds up to 20Kbps. The CAN bus has no
master (any ECU can transmit at any time, although messages are
prioritized), accommodates up to 2048 ECUs (with 11-bit CAN
IDs, although an extension allows for 29-bit CAN IDs), and allows
speeds up to 1Mbps.

An original equipment manufacturer (OEM), such as Ford or
General Motors, chooses the ECUs that reside on a vehicle model,

Vehicle
CAN bus

(250-500Kbps)

Telematics
ECU

Gateway
ECU

Engine
ECU

Side
windows

ECU

Door
lock
ECU

Power
windows

ECU

Manufacturer

Diagnostics
ECU

LIN bus
(2-20Kbps)

OBD-II

Figure 1: How ECUs reside on different network segments within a vehi-
cle.

Vehicle 1

OEM 1

Tier-1 supplier
A

Tier-2 supplier

Tier-3 supplier

OTA (Cellular, WiFi), Wired (USB, OBD-II)

Vehicle 2

OEM 2

Tier-1 supplier
B

Figure 2: How software is distributed from suppliers to OEMs to vehicles.

usually produced by automotive suppliers. Tier-1 suppliers, which
directly supply OEMs, may outsource the development of sub-com-
ponents of ECUs (e.g., the baseband module) to tier-2 suppliers,
which in turn may then outsource to tier-3 suppliers. The software
for an ECU is maintained by a supplier, and delivered to the OEM
to be distributed to vehicles. Thus, the source code for software
on ECUs may not be available to OEMs. Figure 2 illustrates how
software is distributed in this supply chain.

To facilitate software updates produced both by the OEM and
suppliers, the OEM maintains a software repository that hosts soft-
ware update files. Dealerships download the latest ECU software
from this repository to then flash it to ECUs via the OBD2 port,
an OEM may push software updates to all applicable vehicles, or
a vehicle may pull the latest known software updates. Some gate-
way ECUs, or telematics and infotainment ECUs, have a wireless
connection to the Internet. Updates are disseminated to vehicles
via this wireless connection, or through physical distribution chan-
nels, such as dealerships, customer-inserted USB sticks, or OBD-II
ports, which are usually reserved for diagnostics.

We assume that all software on the repository is organized by
images, where an image contains all of files needed to run an appli-
cation on an ECU. There is exactly one image per ECU.
2.2 The Update Framework (TUF)

The Update Framework (TUF) [25, 32] is a security system de-
signed to protect users of software repositories, such as Microsoft
Windows Update, Ubuntu, the Python Package Index (PyPI), Ruby-
Gems, or Docker Hub, from a number of security attacks [9–12].
The technology integrates a layer of signed metadata, such as cryp-

ε

timestamp

metadata images
signs metadata for

signs root keys for

delegates images toroot

release targets

A1

BC

A.img

C.img

signs for images

A.*

B.*, C.*

*.img A2

B.img

Figure 3: The four basic (root, timestamp, release, and targets) roles used
in TUF.

tographic hashes and file sizes, to the software repository. By ver-
ifying these metadata, e.g., by checking the hash of a downloaded
software update against the signed hash of the same update in the
metadata, security attacks can be detected and prevented before in-
stallation. TUF does not aim to prevent a compromise before it
happens; rather, it aims to limit the impact of a compromise when
it happens.

TUF is designed around four key principles. The first is sep-
aration of duties. Different pieces of metadata are signed by the
repository administrators using different roles in order to distribute
responsibilities and increase compromise resilience [25]. Figure 3
illustrates the four basic roles that must exist on a TUF-secured
repository: the root, timestamp, release, and targets roles. The root
role serves as the certificate authority: it distributes and revokes the
public keys used to verify metadata produced by each of these four
roles (including itself). The timestamp role indicates whether there
are any new metadata or images on the repository. The release role
indicates which images have been released by the repository at the
same time. The targets role provides metadata, such as hashes and
file sizes of images, and may delegate the responsibility of signing
metadata about images to other, custom-made roles. For example,
in Figure 3, the targets role has delegated all images that match the
filename pattern “A.*” to the A1 role, and all images that match the
filename patterns “B.*” and “C.*” to the BC role. In turn, the A1
role delegates a subset of its images (in this case, only the “A.pkg”)
to the A2 role. A delegation binds the public keys used by a dele-
gatee to a subset of the images these keys are trusted to sign. This
means that the targets role would distribute and revoke the public
keys for the A1 and BC roles, whereas the A1 role would do the
same for the A2 role.

The second design principle is the optional use of a threshold
number of signatures. The metadata file for a role can be config-
ured so it must be signed using a minimum number of t out of n
keys. This significantly increases the number of keys that must be
compromised to launch an attack.

The third principle is an explicit or implicit process to revoke
keys. The public keys used to verify a metadata file can be implic-
itly revoked by including an expiration date in the metadata file (so
that the keys would be considered expired after that date), or they
can be explicitly revoked by signing new metadata that replaces the
old keys with new keys.

The fourth principle is using offline keys, or private keys kept
physically disconnected from the Internet, to sign the most sensi-
tive roles. This is done so that, even if attackers compromise the
repository, they are unable to sign new and malicious versions of
sensitive metadata.

By combining these four design principles, the impact of a key
compromise can be distributed and minimized such that users are
insulated from many security attacks — even if the repository is
compromised.

Figure 4 summarizes the responsibilities of each of the four basic
roles. An ECU would install images with a software updater that

Role Purpose

root Serves as the certificate authority for the repository. Distributes and revokes the
public keys used to verify the root, timestamp, release, and targets role metadata.

timestamp Indicates whether there is any new metadata or image on the repository.

release Indicates which images have been released at the same time by the repository.

targets Indicates metadata such as the cryptographic hashes and file sizes of images. May
delegate this responsibility to other, custom-made roles.

Figure 4: The four basic roles that TUF uses to add signed metadata to the
repository.

downloads and verifies all the metadata signed by these roles. The
verification process starts with the software updater downloading
and verifying all of these metadata from the repository. An image
should be installed only if it matches the signed metadata.

TUF is a flexible security system that can be adapted to manage
even complex arrangements concerning who is trusted to sign im-
ages. With this adaptability, TUF can be used to sign software on
automotive repositories. However, it will require a few modifica-
tions in order to meet the special challenges of securing updates on
ECUs.

3 Threat model
In this section, we define a threat model, or a look at many ways

attackers can affect the security of software updates delivered be-
tween repositories and vehicles. First, we describe the higher-level
goals that motivate attackers to target automotive ECUs. (Sec-
tion 3.1). Second, we describe capabilities that attackers need to
acquire to achieve these goals (Section 3.2). Third, given these ca-
pabilities, we describe several security attacks that attackers can
perform to achieve their goals (Section 3.3). Finally, we state the
security goals we believe are achievable with Uptane (Section 3.4),
and a few that are out of scope at this stage (Section 3.5).
3.1 Attacker goals

We surmise that attackers target vehicle ECUs to achieve one
or more of the following four goals, listed in increasing order of
impact:

• Read updates: Attackers aim to learn the contents of software
updates in order to reverse-engineer ECU firmware and, in doing
so, to steal intellectual property from the vehicle.

• Deny updates: Attackers want to prevent vehicles from fixing
software problems.

• Deny functionality: Attackers try to stop ECUs from function-
ing correctly, thus causing the vehicle or a component to fail or
behave abnormally, either temporarily or permanently.

• Control: Attackers want to modify vehicle performance.

3.2 Attacker capabilities
To meet the broad goals stated above, an attacker is capable of

the following actions:

• Intercept and change network communications (i.e., perform man-
in-the-middle attacks). These actions can be accomplished from
either:

– Outside the vehicle: for example, the attacker could control
a cellular network used to distribute updates, or

– Inside the vehicle: for example, the attacker could control
communications over a gateway ECU, normal ECU, OBD-II
port, USB, etc. Using this, attackers could spoof messages as
having originated from any source.

Icon Security attack
Eavesdrop attack

Drop-request attack

Freeze attack

Partial bundle installation attack

Rollback attack

Endless data attack

Mixed-bundles attack

Mix-and-match attack

Arbitrary software attack

Figure 5: The security attacks that ECUs should handle.

• Compromise ECUs in a vehicle.

• Compromise cryptographic keys used to sign software updates
or the servers that store those keys.

Furthermore, we assume that attackers have access to software
updates previously released by the repository. They may do this by
pretending to be a vehicle, and periodically requesting new updates
from the repository.
3.3 Security attacks

To achieve the goals listed above, attackers can use the following
security attacks (listed in Figure 5).
3.3.1 Read updates

First, attackers are interested in the contents of software updates,
perhaps in order to reverse-engineer ECU firmware. In doing so,
they can steal intellectual property from the vehicle. One way to
read this data is to stage an eavesdrop attack, where attackers can
read unencrypted updates sent from the repository to the vehicles.
3.3.2 Deny updates

Second, attackers want to prevent vehicles from fixing software
problems by denying access to updates. They may do so with one
of the following attacks:

• Drop-request attack: blocks network traffic outside or inside the
vehicle to prevent an ECU from receiving any updates.

• Slow retrieval attack: causes an ECU to receive an application
update so slowly that a known security vulnerability can be ex-
ploited by an attacker in the meantime. Note, that both the straw-
man for Uptane and its final design are capable of handling this
type of attack for all ECUs.

• Freeze attack: indefinitely sends an ECU the last known update,
even if there may be newer updates on the repository.

• Partial bundle installation attack: causes some ECUs to not in-
stall the latest updates. Attackers can do this by dropping traffic
to these ECUs. Sometimes this attack may happen accidentally,
such as if updates are interrupted due to running out of power.

3.3.3 Deny functionality
Third, attackers would like to cause vehicles to fail to function

in one of the following ways:

• Rollback attack: causes an ECU to install outdated software
with known vulnerabilities.

• Endless data attack: The simplest way for attackers to induce
failure is to execute an endless data attack. This strategy causes
an ECU to crash by sending it an indefinite amount of data, thus
making it run out of storage.

• Mixed-bundles attack: A mixed-bundles attack causes failure of
ECUs to interoperate, thus preventing the vehicle from working
correctly. Attackers do this by causing ECUs to install incom-
patible versions of software updates that must not be installed
at the same time. Specifically, attackers cannot create new bun-
dles of images, but they can show different bundles to different
ECUs at the same time. For example, ECU-1 is given an update
from bundle 1, whereas ECU-2 is given an update from bundle
2.

• Mix-and-match attack: A mix-and-match attack also causes ECUs
to fail to interoperate. If attackers have compromised repository
keys, they can use these keys to release an arbitrary combination
of new versions of images. For example, both ECU-1 and ECU-
2 install updates from bundle 3. However, attackers have abused
repository keys to sign this bundle, which points to incompatible
versions of software updates. Note that a mix-and-match attack
is worse than a partial bundle installation or mixed-bundles at-
tack, because attackers can arbitrarily combine updates.

3.3.4 Control
Fourth, and most severe of all, attackers can cause an ECU to

install software of the attacker’s choosing. This means that the at-
tacker can arbitrarily modify the vehicle’s performance. They may
do so with an arbitrary software attack, where attackers overwrite
the software on an ECU with malicious software.
3.4 Defender goals

Inasmuch as possible, we aim to achieve compromise resilience [25]
to all attacks. Ideally this should also occur when some portions of
the OEM have been compromised. We aim to set the bar for such a
compromise high enough that an attack would be unlikely to affect
all vehicles, and/or an attacker would have to perform an unfeasible
amount of work to do so.

A defender also wants to be able to recover from attacks in the
most secure way possible. So a compromised key should be able
to be securely and swiftly revoked, and vehicles not yet compro-
mised should not be at risk. Ideally, a compromised ECU should
be able to be restored to correct operation with minimal negative
consequences.
3.5 Non-goals

The following types of attacks are considered outside the scope
of this paper:

• Physical attacks, such as mechanics manually tampering with
ECUs after pulling them out of vehicles.

• Compromise of the build system, version control system, pack-
aging process, etc. of a supplier or an OEM. Since other work
exists to solve this problem (e.g., git signing [20], TPMs, Toto),
we do not attempt to duplicate those techniques here.

• Using remote exploits to compromise an ECU using a program-
ming error (e.g., buffer or heap overflow, ROP, use-after-free,
etc.).

• Random failures. Since the automotive industry has handled
these failures well, we focus only on attacks by an intelligent
adversary in this paper.

Automotive Repository

targets

A1.imgA

releasetimestamp

A*
.im

g

root

director

Inventory
server

OEM-managed supplier-managed

Metadata Images

B

C

B3.img

D

E

CA5.img

CB2.img

B*.img

C*.img

CA*.img

CB*.img
signs metadata for

signs root keys for

delegates images to
signs for images

consults

Figure 6: TUF roles customized and configured for automotive reposito-
ries. Note the addition of the director role, and the delegation of ECU im-
ages from the OEM to its suppliers.

4 Strawman design
In this section, we present a strawman design utilizing a straight-

forward application of TUF, and reveal why it would not adequately
address our threat model (Section 3). First, we discuss how an
OEM could customize TUF for vehicle updates by adding new
roles (Section 4.1). Second, we explain how an ECU verifies meta-
data in this design (Section 4.2). Third, we describe the workflow
for downloading and verifying software updates (Section 4.3) on a
vehicle. Fourth, we discuss how an OEM may control the direc-
tor’s ability to rollback updates (Section 4.4). Finally, we show the
limitations of this strawman design (Section 4.5), setting the stage
for the new design features for Uptane presented in Section 5.
4.1 Customizing TUF for automotive repositories

Though designed for software on traditional repositories, TUF
roles can be used to sign software on automotive repositories as
well. However, to do so, we need to add a new role and use the
pre-existing targets role to delegate images.

The first change required is the addition of the director role to
the repository (see Figure 6). Adding this role gives the OEM more
complete control over the choice of images downloaded and in-
stalled by vehicles. The director role functions much like a tradi-
tional package manager, except that it operates on the server side
instead of the client. It can be used to instantly blacklist faulty ver-
sions of software, or to customize software for different vehicles
of the same type when vehicle owners may have paid more for ex-
tra features. When a vehicle contacts the repository for updates,
it must identify itself to the director using its vehicle identifica-
tion number (VIN). Given the VIN, the director would consult the
inventory server to learn which ECUs are installed on this vehi-
cle. Then, the director signs director metadata, or fresh instruc-
tions for the vehicle about which images should be downloaded
and installed by its ECUs. These instructions bind the unique se-
rial number of every ECU to the filename and hash of the image
it must install. Since these instructions are always customized for
every vehicle, and freshly signed by the director role, a man-in-
the-middle attacker cannot copy these instructions and replay them
to other vehicles. The director also performs dependency resolu-
tion [8] on behalf of vehicles. This means that if one ECU image
depends on another, then the director would include both of these
images in its instructions.

Second, the OEM may use the pre-existing targets role to dele-
gate the signing of these images to its suppliers. These delegations
are flexible, and allow either the OEM or its suppliers to sign im-
ages, in keeping with the decentralized structure of the auto sup-
ply chain. We use four examples, illustrated in Figure 6, to show
how flexible these delegations can be. In the first example, the tar-

Automotive
Repository

Vehicle

Bus 1 Bus 2 Bus 3

Primary
(ECU 1)

Diagnostics
ECU

OBD-II
port

Secondary
(ECU 2)

Secondary
(ECU 3)

Full verification

Partial verification

Central
Gateway

ECU

Figure 7: The relationship between ECUs on a vehicle. Details are ex-
plained in the text.

gets role delegates to role A all images produced by supplier A.
Although supplier A builds these images and uploads them to the
repository, the supplier has opted not to sign these images. Instead,
the OEM itself controls role A, and signs these images on behalf
of the supplier. In the second example, the targets role delegates to
role B all images produced by a supplier B. In this case, the sup-
plier has opted to sign the images produced by supplier. In the third
example, the targets role delegates to role C all images produced by
a supplier C. Instead of signing images, this role delegates one sub-
set of images to the role D, and another subset to role E. These
roles could correspond to software developers who are currently
employed by supplier C, and who are responsible for developing,
building, and testing ECU images. At any time, the role C can
change the developers responsible for signing images, without re-
quiring the OEM to update its delegations.

Even with the changes described above, it is important to remem-
ber that TUF was designed with the assumption its users would be
working with powerful computing devices, such as smart-phones,
tablets, laptops, desktops, or servers. For these types of devices,
downloading and verifying all of this TUF metadata is not a chal-
lenge. However, a vehicle consists of many different computers
(ECUs), each of which may verify metadata to a different extent
from the others. Securing this diverse group of computing units
means conducting metadata verification in different ways.
4.2 Verifying TUF metadata on vehicles

To design an effective system for verifying metadata on car ECUs,
one first needs to understand that ECUs are highly heterogeneous
in terms of computing power, memory storage, and security capa-
bilities. We classify every ECU on a vehicle either as primary or as
secondary. For the sake of simplicity, we assume that there is only
one primary ECU per vehicle. The primary downloads, verifies,
and distributes metadata, as well as images, to all secondaries. The
primary verifies all metadata on behalf of all secondaries in order to
protect them from security attacks. A secondary depends upon the
primary to be given its metadata and image, but verifies them before
installing the image. We assume that the primary can communicate
with all secondaries (possibly indirectly through a central gateway
as in Figure 7). As illustrated in Figure 8, every ECU verifies an
image downloaded from the repository in one of the following two
ways.

In the first, more secure method, a full verification ECU (e.g.,
the primary, and ECU 2) verifies and caches the timestamp, release,
root, and targets metadata. It obtains these files from the primary,
which has already verified them. Despite this, the ECU checks the
files again, to protect against a compromised primary or a man-

timestamp release root targets director

Primary
(ECU 1)

Full
verification
Secondary

(ECU 2)

Partial
verification
Secondary

(ECU 3)

boot
loader

timestamp release root targets director

image
1

image
2

image
3

timestamp release root targets director

boot
loader

timestamp release root targets director

image
2

previous

current

previous

current

director

boot
loader

director

image
3

previous

current

Figure 8: The metadata and images verified and cached by each type of
ECU.

in-the-middle on the car’s network. To check the metadata, these
ECUs need storage space to keep a previous and current copy. In
order to prevent a variety of security attacks, the ECU verifies all
of these metadata following the TUF specification. It also verifies
that the hash of a downloaded image matches the hash of the image
in both the director and targets metadata. Thus, an attacker must
compromise both roles to cause this ECU to install a malicious
image.

In the second, less secure method, a partial verification ECU
(e.g., ECU 3) verifies and caches only the director metadata. Once
again, this information is provided by the primary. The ECU that
performs partial verification requires enough storage space to keep
a previous and current copy of the director metadata. During ver-
ification, the ECU verifies that the hash of a downloaded image
matches the hash of the image in the signed and verified director
metadata.

Every ECU performs its software updates using a bootloader.
The bootloader is a small program that runs every time an ECU is
rebooted to enable the process of downloading the latest metadata
and image from the primary, and verifying the image before trans-
ferring execution to the image. The OEM supplies the bootloader,
as well as the latest metadata and images, onto ECUs when the
vehicle is initially manufactured.
4.3 Software update workflow

In this section we put together all the elements described above
to show how the proposed strawman design would work to securely
update software on a vehicle.

As a vehicle is running, the primary ECU downloads the lat-
est relevant software updates. First, the primary downloads and
verifies the latest timestamp, release, root, and targets metadata.
Second, the primary downloads and verifies the director metadata,
which contains information (e.g., filenames and hashes) about im-
ages that all ECUs should install next. Third, based on that infor-
mation, the primary downloads and verifies images for all ECUs. It
verifies that the targets and director metadata match each other, and
that all images match these metadata. Fourth, the primary sends the
appropriate metadata to every secondary. At this point, the vehicle
is ready to apply the ECU updates at the next convenient opportu-
nity (e.g., upon the next restart).

After the vehicle is restarted, we assume that all ECUs reboot,
run their bootloader, and update to the latest software. First, the pri-

Attacker capabilities Attacks on the primary

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

DR

**
DR

TS RS DR

TS RS DR

Figure 9: Security attacks that affect the primary, organized by attacker
capabilities. DR, TS, RS, SP, TR, and RT denote the director, timestamp,
release, supplier, targets, and root keys, respectively. Red keys are easier to
compromise than blue keys. Thin-bordered keys are easier to compromise
than thick-bordered keys. The * symbol denotes that an attack is limited to
ECUs signed by the given roles.

mary sends the latest downloaded image to every secondary, which
overwrites its previous image. (In order to prevent slow retrieval
attacks, we assume that every ECU uses a cycle counter.) Second,
every bootloader verifies its latest downloaded metadata. Third,
every bootloader verifies that the latest downloaded image matches
the latest downloaded metadata. Then, each bootloader overwrites
its previous with the latest downloaded metadata. Finally, each
bootloader transfers execution to the latest downloaded image.
4.4 Controlling the director’s ability to rollback updates

Using the director role to control updates in an online manner
comes with benefits and drawbacks. A primary benefit is that the
OEM does not need to use offline keys (which are cumbersome in
actual practice) in order to immediately blacklist images that are
listed in the targets metadata. However, a drawback is that this
opens the ECU to rollback attacks when the director is compro-
mised, and obsolete versions of images are still listed in the targets
metadata. Unless noted otherwise, we assume that the director can-
not instruct an ECU to replace its current image on disk with an
older version number. The OEM may do this by setting a default
flag in a configuration file. We will discuss in a separate document
how an OEM may override this behavior in deployment.
4.5 Security analysis

The strawman design falls short in preventing many attacks on
ECUs, even with its enhanced security features. In particular, an
attacker can cause a vehicle to fail even without compromising any
keys. The figures in this subsection enumerate security attacks to
which ECUs with different types of metadata verification are vul-
nerable, given various attacker capabilities, such as having compro-
mised a set of keys used to sign updates. In each figure, we assume
that attackers (1) have compromised some set of keys used to sign
metadata, and (2) can respond to requests either outside or inside
the vehicle. Only fixed combinations of keys are shown in these
figures, because any other combination would reduce to one of the
documented cases.

Figure 9 lists the security attacks to which the primary is vulner-
able. All rows, except for the last, are listed in increasing order of
difficulty for the attacker to compromise.

Even if attackers have not compromised any key (or if they have
compromised only the director keys), the primary is vulnerable to
an eavesdrop attack if the network connection between the primary
and the repository is not encrypted (e.g., using TLS). The primary
is also vulnerable to a drop-request attack, because attackers can
drop requests to the repository. Furthermore, the primary is vulner-
able to a freeze attack because, unlike desktop and server machines,
ECUs do not typically have reliable real-time clocks. Thus, the pri-

Type of secondary

Attacker capabilities Full verification Partial verification

MitM

MitM

SP

TR

RT

MitM

MitM

MitM

MitM

DR

**
TS RS DR

TS RS DR

TS RS DR

+

+

+

+

Figure 10: Security attacks that affect secondaries if attackers have not
compromised the primary. The + symbol denotes that an attack requires
attackers to be able to respond to requests inside the vehicle.

Type of secondary

Attacker capabilities Full verification Partial verification

MitM

MitM

SP

TR

RT

MitM

MitM

MitM

MitM

DR

TS RS DR

TS RS DR

TS RS DR

**

Figure 11: Security attacks that affect secondaries if attackers have com-
promised the primary.

mary may not be able to tell whether a metadata file has expired.
Finally, the primary is vulnerable to a partial bundle installation
attack, because man-in-the-middle attackers inside the vehicle can
drop updates to some (but not all) ECUs.

If attackers have compromised at least the director keys, then the
primary is also vulnerable to a mix-and-match attack, because at-
tackers can use the director to arbitrarily combine new versions of
images, and thus cause the vehicle to install incompatible versions
of images. (If attackers have also compromised the timestamp and
release keys, then they can arbitrarily combine new versions of tar-
gets metadata files.)

If attackers have compromised a supplier’s keys (as well as the
timestamp, release, and director keys), then the primary is also vul-
nerable to rollback and arbitrary software attacks if the supplier
signs its images (denoted by the asterisk symbol).

If attackers have compromised the root keys, then the primary is
vulnerable to indefinitely long freeze attacks, because attackers can
renew signatures on any metadata file or postpone its expiration.

Figure 10 documents the security attacks to which secondaries
are vulnerable if attackers have not compromised the primary. There
are two differences from the previous figure.

First, all secondaries are always vulnerable to endless data at-
tacks, because attackers who can respond to requests within the ve-
hicle can tamper with images distributed between the primary and
secondaries. Since the primary overwrites the secondary’s image,
all secondaries are vulnerable.

Second, all secondaries are also always vulnerable to mixed-
bundle attacks attacks because attackers who can respond to re-
quests inside the vehicle (denoted by the + symbol) can show differ-
ent versions of metadata to different secondaries at the same time.

Figure 11 documents the security attacks to which secondaries
are vulnerable if attackers have compromised the primary. The
most notable difference from the previous table is that even if at-
tackers have compromised only the director keys, then all partial

verification secondaries are vulnerable to rollback and arbitrary soft-
ware attacks. This is because these secondaries depend upon the
primary (now compromised, unbeknownst to them) to prevent these
attacks by comparing the director to the targets metadata.

To conclude this section, we observe that the strawman design,
which represents the straightforward application of existing tech-
nology, will not prevent vulnerabilities even if the attacker has not
compromised any keys. All an attacker has to do is tamper with re-
quests inside the vehicle, which is significantly easier than compro-
mising keys. Furthermore, there is no secure way to recover from
many types of successful attacks. In the next section, we present
several design features that Uptane offers OEMs to significantly
improve software update security beyond the strawman design.

5 Uptane: Design
Uptane is a new software update framework designed specifi-

cally to meet the security needs of programs running on automotive
ECUs. Though its core processes are adapted from TUF, Uptane
adds several distinct features that reflect the demands of the auto-
motive environment. We begin this section by describing the design
goals (Section 5.1) and overview (Section 5.2) of Uptane. Then,
we describe the four design features (Section 5.3) unique to Uptane
that target the security weaknesses identified in the strawman de-
sign. An OEM is free to choose and apply some and not all of these
features, depending on its security concerns. However, as we will
analyze in Section 5.4, we strongly recommend using all of these
features in order to provide as much compromise resilience [25] as
possible.

5.1 Design goals
Our primary goal in developing Uptane was to create a software

update mechanism for vehicles capable of retaining the strongest
level of security possible (e.g., compromise resilience [25]), even
if said vehicle should be attacked by an intelligent and determined
adversary. To the extent that is practical, an in-depth defense should
be employed to require an attacker to compromise many differ-
ent systems (which are protected in diverse ways) to successfully
launch an attack.

We aim to ensure, as much as possible, the authenticity and in-
tegrity of software updates, regardless of the source of the down-
load. While we do not guarantee the availability of software up-
dates (e.g., by preventing drop-request attacks), our mechanism
must not reduce this quality in existing security systems deployed
by OEMs. Another critical goal in formulating our design is that
the software update mechanism must be flexible and lean to be con-
sidered for deployment by OEMs. This means that the architecture
must be flexible enough to support different use models and deploy-
ment scenarios. Deployment concerns, such as broad applicability
to a variety of architectures, were also taken into account.

5.2 Design overview
Uptane uses a variety of design features to provide a security

level for software updates that goes beyond what is used today
in the automotive industry. A repository includes the hash of an
updated firmware image in a metadata file, and signs that meta-
data file, which is equivalent to signing the image in the first place
in terms of security. A variety of digitally signed metadata files,
detailed in the previous section and this one, provides protection
against attacks described in Section 3.3. The update might be pro-
vided in encrypted format and/or as a differential (delta) update to
the vehicle. The repository bundles all images and metadata files,
and may use a protected channel such as TLS to connect with a
primary in the vehicle. The primary then unpacks the bundle and
distributes the update files to the proper secondaries, which then

Latest downloaded
metadata

Latest downloaded
image (possibly a delta)

Boot-
loader

Previous
metadata

Previous
image

Figure 12: An ECU should use additional storage to be able to recover
from endless data attacks.

ECU 1 ECU 3 ECU 2

Primary
ECU

Send same metadata
at the same time

Figure 13: ECUs should be networked such that the primary is forced to
broadcast metadata to all secondaries.

verify the image before executing the update. Uptane provides a
security framework that can be applied to existing update protocols
such as OMA-DM, and existing data exchange protocols such as
UDS and OTX, as long as those protocols support the exchange of
a data block that is provided by the framework.
5.3 Design features

Uptane uses four design features to solve specific security weak-
nesses identified in the strawman design. These features are: lever-
age additional storage to recover from endless data attacks (Sec-
tion 5.3.1); broadcast metadata to prevent mixed-bundles attacks
(Section 5.3.2); utilize a vehicle version manifest to detect partial
bundle installation attacks (Section 5.3.3); and use a time server to
limit freeze attacks (Section 5.3.4).
5.3.1 Using additional storage to recover from endless data

attacks
Man-in-the-middle attackers can execute endless data attacks on

ECUs that have only enough space to keep one image (Section 4.5).
Thus, if these attackers send an ECU random data instead of an
actual image, then it is unable to boot to a working image, even
though the bootloader can verify that that the random data does not
match the latest downloaded metadata.

In order to solve this problem, an ECU can use additional stor-
age, where it has enough storage to maintain not only a previous
image, but also the latest downloaded image (or at least a delta
from the previous to the latest downloaded image), as illustrated
in Figure 12. This allows an ECU to be updated without having a
previous known good image overwritten. Thus, if attackers have
tampered with the image during transmission, then it may still boot
to a functioning image.

There are many ways of implementing additional storage. The
simplest way is to use A/B storage, which requires space to keep
two images. Another more cost-efficient way is to require only
enough additional space to keep a delta of blocks that have changed
from the previous to the latest image. If this delta matches the latest
targets and/or director metadata, then the ECU would proceed to
update the previous image using the delta. Otherwise, it would
discard the delta, and continue to use the previous, working image.
This method does not require additional space if the ECU already
has enough free space to store this delta.
5.3.2 Broadcasting metadata to prevent mixed-bundles attacks

Attackers who control the primary, or can respond to requests
within the vehicle, can execute mixed-bundles attacks because they
can show different versions of metadata to different ECUs at the

Director

Repository

Vehicle

Secondary
(ECU-2)

Secondary
(ECU-3)

ECU-1: (hash(image-1)))
ECU-2: (hash(image-2)))
ECU-3: (hash(image-3)))

Primary
(ECU-1)

(hash(image-1))) (hash(image-2)))

(hash(image-3)))

Figure 14: The primary reports the vehicle version manifest, or informa-
tion signed by every ECU about what it has currently installed, whenever it
requests updates from the director.

Figure 15: ECUs learn about the latest known time from an external time
server.

same time (Section 4.5). In order to prevent this problem, the pri-
mary should broadcast the latest downloaded metadata to secon-
daries (see Figure 13). Ideally this is implemented by the network
(e.g., Ethernet broadcast or CAN bus) such that any metadata sent
to one secondary by a primary will be seen by all other secondaries
at the same time. Note that, like the rest of Uptane, this feature
does not require ECUs to authenticate communications sent to each
other. Note that if secondaries are located on different network seg-
ments, and an attacker can interrupt and suppress metadata broad-
casts on a subset of network segments, then a mixed-bundles attack
is possible. However, this attack is less severe in impact compared
to more significant threats stemming from other potential attacks,
since the adversary has already gained access to the internal vehicle
communication network.
5.3.3 Using a vehicle version manifest to detect partial bundle

installation attacks
Even if there are no attacks on ECUs, sometimes a scenario

might accidentally occur that is similar to the result of a partial
bundle installation attack because only some ECUs successfully
installed the last set of updates sent by the director. Regardless of
how these attacks happened, an OEM can detect these attacks us-
ing a vehicle version manifest, or information signed by every ECU
about what it has currently installed (as illustrated in Figure 14).
After verifying and installing an update, every ECU would use its
symmetric key, provisioned by the OEM during vehicle manufac-
ture, to attest to information, such as the hash, about what it has
installed, and send it to the primary. Note that an ECU would sign
and send its manifest only once per ignition cycle. The primary
would collect these signatures to build the vehicle version mani-
fest, and send it to the director whenever it requests updates. If the
director detects a mismatch between the last updates sent to the ve-
hicle compared to what it has actually installed, then the OEM may
be alerted about this for further follow-up.
5.3.4 Using a time server to limit freeze attacks

Attackers can execute freeze attacks on ECUs because unlike
desktop and server machines, ECUs do not typically have reliable
real-time clocks. Thus, the primary may not be able to tell whether
a metadata file has expired (Section 4.5).

Attacker capabilities Attacks on the primary

MitM

MitM

TS RS

SP

TR

RT

MitM

MitM

MitM

MitM

DR

DR

TS RS DR

TS RS DR

#

@

#

#

**

Figure 16: Security attacks that affect the primary, organized by attacker
capabilities. DR, TS, RS, SP, TR, and RT denote the director, timestamp,
release, supplier, targets, and root keys respectively. Red keys are easier to
compromise than blue keys. Thin-bordered keys are easier to compromise
than thick-bordered keys. The * symbol denotes that an attack is limited
to ECUs signed by the given roles. The # symbol denotes than an attack is
limited till the earliest expiration timestamp. The @ symbol denotes that an
attack can be detected, if not prevented.

In order to solve this problem, every ECU should periodically
(e.g., once between every two ignition cycles) update its current
time using an external time server. Figure 15 illustrates how this
may happen in the background while the vehicle is running. First,
every ECU sends a nonce to the primary which, in turn, passes the
nonces along to the time server. Then, the time server individually
signs for each nonce the current time and nonce, and sends the re-
sponse to the primary. The primary verifies this response (ensuring
that the signatures are valid, and that the time is the same for every
nonce), and sends the current time to secondaries.

On reboot of an ECU, while it is running its bootloader, it veri-
fies the signature of the time server using its public key, updates its
time, and chooses a new nonce to be sent later to the time server.
(Note that an ECU would verify this signature only once per ig-
nition cycle.) Whenever the ECU verifies the latest downloaded
metadata, it would check whether the metadata has expired using
this latest downloaded time.

Note that if every secondary also includes its latest known time
in building the vehicle version manifest, then the director can de-
tect whether the primary is indefinitely replaying the same vehicle
version manifest.
5.4 Security analysis

Finally, we discuss why these design features provide improved
security over the strawman design (Section 4.5). The figures in
this subsection enumerate security attacks that ECUs with differ-
ent properties are vulnerable to, given various attacker capabili-
ties (such as having compromised a set of keys used to sign up-
dates). Only fixed combinations of keys are shown in these figures,
because any other combination would reduce to one of the docu-
mented cases. The fixed combination of keys are listed in increas-
ing order of difficulty to compromise. Note that in the following
analysis, we assume that all of the aforementioned design features
are used.

Figure 16 lists the security attacks to which the primary is vul-
nerable. All rows, except for the last, are listed in increasing order
of difficulty for the attacker to compromise. There are two impor-
tant differences from Figure 9.

First, although partial bundle installation attacks cannot be pre-
vented, these attacks can be detected by the director (when it has
not been compromised) using the vehicle version manifest (marked
by the green @ symbol). Hence, when the director can detect these
attacks, their impact is temporary, because the director can help
vehicles to recover from them.

Second, attackers can execute freeze attacks only after having

Type of secondary

Attacker capabilities Full verification Partial verification

MitM

MitM

SP

TR

RT

MitM

MitM

MitM

MitM

DR

TS RS DR

TS RS DR

TS RS DR

#

@

#

#

**

Figure 17: Security attacks that affect secondaries if attackers have not
compromised the primary.

Type of secondary

Attacker capabilities Full verification Partial verification

MitM

MitM

SP

TR

RT

MitM

MitM

MitM

MitM

DR

TS RS DR

TS RS DR

TS RS DR

**

@

#

#

#

Figure 18: Security attacks that affect secondaries if attackers have com-
promised the primary.

compromised the timestamp, release, and director keys. These at-
tacks are limited to the earliest expiration timestamp of the root, the
director, or a targets metadata file (marked by the green # symbol).

Figure 17 documents the security attacks to which secondaries
are vulnerable if attackers have not compromised the primary. There
are two important differences from Figure 10 and the previous fig-
ure. First, since the primary must broadcast metadata to secon-
daries, attackers cannot execute mixed-bundles attacks. Second,
the secondary is not vulnerable to an endless data attack, unless it
has been remotely exploited. This is because even if the bootloader
finds that the latest downloaded metadata and image do not match
each other, then it can restore to the previous working image on
additional storage.

Figure 18 documents the security attacks to which secondaries
are vulnerable if attackers have compromised the primary. The im-
portant difference from Figure 11 and the previous figure is that
when attackers have compromised the director keys, then attack-
ers are able to execute rollback and arbitrary software attacks on all
partial verification secondaries on all vehicles. In contrast, these at-
tacks can be executed on only some full verification secondaries on
some vehicles when attackers have compromised at least the right
supplier’s keys.

6 Conclusions
Software updates in the automotive world are increasingly im-

portant, but make vehicles vulnerable at the same time. In this
paper, we presented the secure framework Uptane for automotive
software updates over-the-air, which is based on the established
TUF standard. Uptane is resilient against partial compromise, and
Uptane covers far more security considerations than other automo-
tive software update mechanisms we are aware of. For instance, we
have shown that vehicles that use Uptane are protected from critical
security attacks, in the most likely case where attackers are able to
perform man-in-the-middle attacks, but have not compromised any
signing key.

To the best of our knowledge, Uptane is also the first software
update framework for automobiles that addresses a comprehensive
and broad threat model. The design features discussed in this paper
require an OEM to make only relatively modest software changes
for its ECUs. Uptane also offers OEMs two different security lev-
els that can be tailored to the safety-sensitivity of the ECU. We
recommend that safety-critical ECUs implement our full verifica-
tion model, and non-safety-critical ECUs deploy our partial veri-
fication model to save resources without significant loss of secu-
rity. ECUs that can perform neither full nor partial verification
should not be remotely updated; instead, they could be updated us-
ing strictly physical means that include a proper proof of physical
presence.

Uptane is regularly discussed with the major automotive industry
stakeholders in the USA to ensure its ability to be deployed [1]. We
strive to make Uptane an industry-wide accepted specification for
secure software updates. For more information, a detailed design,
specification, and the latest developments on Uptane, please visit
our website [2].

7 Acknowledgments
We would like to thank Lois Anne DeLong for her efforts on

this paper. Our work on Uptane was supported by U.S. Department
of Homeland Security grants D15PC00239 and D15PC00302. Our
work on TUF was supported by U.S. National Science Foundation
grants CNS-1345049 and CNS-0959138.

8 References

[1] Uptane discussion forum.
https://uptane.umtri.umich.edu/forum/, 2016.

[2] Uptane web site. https://uptane.github.io/, 2016.
[3] Apache Infrastructure Team. apache.org incident report for

8/28/2009. https:
//blogs.apache.org/infra/entry/apache_org_downtime_report,
2009.

[4] Apache Infrastructure Team. apache.org incident report for
04/09/2010. https:
//blogs.apache.org/infra/entry/apache_org_04_09_2010,
2010.

[5] B. Arkin. Adobe to Revoke Code Signing Certificate.
https://blogs.adobe.com/conversations/2012/09/
adobe-to-revoke-code-signing-certificate.html, 2012.

[6] A. Bellissimo, J. Burgess, and K. Fu. Secure software
updates: disappointments and new challenges. Proceedings
of USENIX Hot Topics in Security (HotSec), 2006.

[7] Brewster, Tom. When governments attack—online.
http://www.bbc.com/capital/story/
20140414-when-governments-attack, 2014.

[8] D. Burrows. Modelling and resolving software dependencies.
https://people.debian.org/~dburrows/model.pdf, 2005.

[9] J. Cappos, S. Baker, J. Plichta, D. Nyugen, J. Hardies,
M. Borgard, J. Johnston, and J. H. Hartman. Stork: package
management for distributed VM environments. In The 21st
Large Installation System Administration Conference,
LISA’07, 2007.

[10] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. A look in
the mirror: Attacks on package managers. In Proceedings of
the 15th ACM conference on Computer and communications
security, pages 565–574. ACM, 2008.

[11] J. Cappos, J. Samuel, S. Baker, and J. H. Hartman. Package
management security. University of Arizona Technical
Report, pages 08–02, 2008.

[12] J. Capppos. Stork: Secure Package Management for VM
Environments. Dissertation, University of Arizona, 2008.

[13] J. Corbet. An attempt to backdoor the kernel.
http://lwn.net/Articles/57135/, 2003.

[14] J. Corbet. The cracking of kernel.org.
http://www.linuxfoundation.org/news-media/blogs/browse/
2011/08/cracking-kernelorg, 2011.

[15] Debian. Debian Investigation Report after Server
Compromises.
https://www.debian.org/News/2003/20031202, 2003.

[16] Debian. Security breach on the Debian wiki 2012-07-25.
https://wiki.debian.org/DebianWiki/SecurityIncident2012,
2012.

[17] P. W. Frields. Infrastructure report, 2008-08-22 UTC 1200.
https://www.redhat.com/archives/fedora-announce-list/
2008-August/msg00012.html, 2008.

[18] Gentoo Linux. rsync.gentoo.org: rotation server
compromised. https://security.gentoo.org/glsa/200312-01,
2003.

[19] GitHub, Inc. Public Key Security Vulnerability and
Mitigation. https://github.com/blog/
1068-public-key-security-vulnerability-and-mitigation,
2012.

[20] GitHub Inc. Signing commits using GPG.
https://help.github.com/articles/signing-commits-using-gpg/,
2016.

[21] GNU Savannah. Compromise2010.
https://savannah.gnu.org/maintenance/Compromise2010/,
2010.

[22] D. Goodin. Attackers sign malware using crypto certificate
stolen from Opera Software.
http://arstechnica.com/security/2013/06/
attackers-sign-malware-using-crypto-certificate-stolen-from-\
opera-software/, 2013.

[23] J. Knockel and J. R. Crandall. Protecting Free and Open
Communications on the Internet Against Man-in-the-Middle
Attacks on Third-Party Software: We’re FOCI’d. In
Presented as part of the 2nd USENIX Workshop on Free and
Open Communications on the Internet, Berkeley, CA, 2012.
USENIX.

[24] B. M. Kuhn. News: IMPORTANT: Information Regarding
Savannah Restoration for All Users.
https://savannah.gnu.org/forum/forum.php?forum_id=2752,
2003.

[25] T. K. Kuppusamy, S. Torres-Arias, V. Diaz, and J. Cappos.
Diplomat: Using delegations to protect community
repositories. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16), pages
567–581, Santa Clara, CA, Mar. 2016. USENIX Association.

[26] H. Magnusson. The PHP project and Code Review.
http://bjori.blogspot.com/2010/12/
php-project-and-code-review.html, 2010.

[27] Microsoft, Inc. Flame malware collision attack explained.
http://blogs.technet.com/b/srd/archive/2012/06/06/
more-information-about-the-digital-certificates-used-to-sign-\
the-flame-malware.aspx, 2012.

[28] V. Miller. Remote exploitation of an unaltered passenger
vehicle.
http://illmatics.com/Remote%20Car%20Hacking.pdf, 2015.

[29] M. Mullenweg. Passwords Reset.
https://wordpress.org/news/2011/06/passwords-reset/, 2011.

https://uptane.umtri.umich.edu/forum/
https://uptane.github.io/
https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
http://www.bbc.com/capital/story/20140414-when-governments-attack
http://www.bbc.com/capital/story/20140414-when-governments-attack
https://people.debian.org/~dburrows/model.pdf
http://lwn.net/Articles/57135/
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
https://www.debian.org/News/2003/20031202
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://security.gentoo.org/glsa/200312-01
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://help.github.com/articles/signing-commits-using-gpg/
https://savannah.gnu.org/maintenance/Compromise2010/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-\ opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-\ opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-\ opera-software/
https://savannah.gnu.org/forum/forum.php?forum_id=2752
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-\the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-\the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-\the-flame-malware.aspx
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://wordpress.org/news/2011/06/passwords-reset/

[30] Red Hat, Inc. Infrastructure report, 2008-08-22 UTC 1200.
https://rhn.redhat.com/errata/RHSA-2008-0855.html, 2008.

[31] RubyGems.org. Data Verification.
http://blog.rubygems.org/2013/01/31/data-verification.html,
2013.

[32] J. Samuel, N. Mathewson, J. Cappos, and R. Dingledine.
Survivable key compromise in software update systems. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 61–72. ACM, 2010.

[33] Slashdot Media. phpMyAdmin corrupted copy on Korean
mirror server.
https://sourceforge.net/blog/phpmyadmin-back-door/, 2012.

[34] J. K. Smith. Security incident on Fedora infrastructure on 23
Jan 2011. https://lists.fedoraproject.org/pipermail/announce/

2011-January/002911.html, 2011.
[35] The FreeBSD Project. FreeBSD.org intrusion announced

November 17th 2012.
http://www.freebsd.org/news/2012-compromise.html, 2012.

[36] The PHP Group. php.net security notice.
http://www.php.net/archive/2011.php#id2011-03-19-1,
2011.

[37] The PHP Group. A further update on php.net.
http://php.net/archive/2013.php#id2013-10-24-2, 2013.

[38] C. Thuen. Remote control automobiles, 2015.
[39] L. Voss. Newly Paranoid Maintainers. http://blog.npmjs.org/
post/80277229932/newly-paranoid-maintainers, 2014.

https://rhn.redhat.com/errata/RHSA-2008-0855.html
http://blog.rubygems.org/2013/01/31/data-verification.html
https://sourceforge.net/blog/phpmyadmin-back-door/
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
http://www.freebsd.org/news/2012-compromise.html
http://www.php.net/archive/2011.php#id2011-03-19-1
http://php.net/archive/2013.php#id2013-10-24-2
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers

	Introduction
	Background
	Automobiles
	The Update Framework (TUF)

	Threat model
	Attacker goals
	Attacker capabilities
	Security attacks
	Read updates
	Deny updates
	Deny functionality
	Control

	Defender goals
	Non-goals

	Strawman design
	Customizing TUF for automotive repositories
	Verifying TUF metadata on vehicles
	Software update workflow
	Controlling the director’s ability to rollback updates
	Security analysis

	Uptane: Design
	Design goals
	Design overview
	Design features
	Using additional storage to recover from endless data attacks
	Broadcasting metadata to prevent mixed-bundles attacks
	Using a vehicle version manifest to detect partial bundle installation attacks
	Using a time server to limit freeze attacks

	Security analysis

	Conclusions
	Acknowledgments
	References

