
This paper is included in the Proceedings of the
2017 USENIX Annual Technical Conference (USENIX ATC ’17).

July 12–14, 2017 • Santa Clara, CA, USA

ISBN 978-1-931971-38-6

Open access to the Proceedings of the
2017 USENIX Annual Technical Conference

is sponsored by USENIX.

Mercury: Bandwidth-Effective
Prevention of Rollback Attacks Against

Community Repositories
Trishank Karthik Kuppusamy, Vladimir Diaz, and Justin Cappos, New York University

https://www.usenix.org/conference/atc17/technical-sessions/presentation/kuppusamy

Mercury: Bandwidth-Effective Prevention of Rollback Attacks Against
Community Repositories

Trishank Karthik Kuppusamy Vladimir Diaz Justin Cappos
New York University Tandon School of Engineering

Abstract

A popular community repository such as Docker Hub,
PyPI, or RubyGems distributes tens of thousands of soft-
ware projects to millions of users. The large number of
projects and users make these repositories attractive tar-
gets for exploitation. After a repository compromise, a
malicious party can launch a number of attacks on un-
suspecting users, including rollback attacks that revert
projects to obsolete and vulnerable versions. Unfortu-
nately, due to the rapid rate at which packages are up-
dated, existing techniques that protect against rollback
attacks would cause each user to download 2–3 times the
size of an average package in metadata each month, mak-
ing them impractical to deploy.

In this work, we develop a system called Mercury that
uses a novel technique to compactly disseminate ver-
sion information while still protecting against rollback
attacks. Due to a different technique for dealing with
key revocation, users are protected from rollback attacks,
even if the software repository is compromised. This
technique is bandwidth-efficient, especially when delta
compression is used to transmit only the differences be-
tween previous and current lists of version information.
An analysis we performed for the Python community
shows that once Mercury is deployed on PyPI, each user
will only download metadata each month that is about
3.5% the size of an average package. Our work has been
incorporated into the latest versions of TUF, which is be-
ing integrated by Haskell, OCaml, RubyGems, Python,
and CoreOS, and is being used in production by LEAP,
Flynn, and Docker.

1 Introduction

Community repositories, such as Docker Hub [25],
Python Package Index (PyPI) [69], RubyGems [71], and
SourceForge [80], provide an easy way for third party
developers to distribute software to users. Unlike tra-
ditional repositories (e.g., Ubuntu, or the Apple App
Store), community repositories allow any developer to
immediately release new software without waiting for an
administrator’s approval. This distinctive feature has led

to the tremendous popularity of these repositories, which
have served billions of downloads to millions of users.

Unfortunately, their popularity also makes them at-
tractive targets for attackers. Major repositories run
by Adobe, Apache, Debian, Fedora, FreeBSD, Gentoo,
GitHub, GNU Savannah, Linux, Microsoft, npm, Opera,
PHP, RedHat, RubyGems, SourceForge, and WordPress
have all been compromised at least once [2–4,21–24,28,
31, 33, 34, 36, 44, 54, 59, 63, 70, 72, 81, 82, 86–88, 93].

When a community repository is compromised, a
number of attacks can be launched on unsuspecting
users, including rollback attacks, where attackers revert
the state of the repository to point to obsolete and vulner-
able versions of software. Rollback attacks are trivial for
attackers to perform: instead of tampering with signed
software, they simply replace these software packages
with older versions. It is equally trivial to prevent such
attacks for software that is already installed by the user,
because existing security systems can easily reject soft-
ware older than what is already on disk. However, there
may be tens of thousands of software projects on a repos-
itory, of which the user may install only a fraction. Un-
less the user keeps track of all projects, she is susceptible
to a rollback attack on a project she might install at a
much later date. Consequently, she would install authen-
tic but obsolete software that contains known vulnerabil-
ities. An attacker can later exploit these vulnerabilities to
compromise her machine.

A solution to prevent rollback attacks needs to meet
several important properties in order to be adopted:

• No administrative overhead. There must not be
additional servers to manage. Many community
repositories are managed by volunteers that infre-
quently interact with the repository, and so the ad-
ministrative burden must remain low.

• Simple client communications. Retrieving a pack-
age should not require clients to gossip or commu-
nicate with third parties. This could create deploy-
ment issues and even security concerns (e.g., in-
forming untrusted parties which security fixes are
being requested [13]).

USENIX Association 2017 USENIX Annual Technical Conference 673

• Low overhead. Repositories often have large band-
width costs and use mirrors or CDNs to offload this
burden. A solution must not substantially increase
this cost, even if the repository hosts a large number
of projects that are rapidly updated.

In this paper, we describe Mercury, a bandwidth-
efficient system that prevents security attacks, includ-
ing rollback attacks, even if a community repository
is compromised. This work is innovative in provid-
ing low-bandwidth rollback protection. However, the
main contribution of this work is how the insights
behind Mercury can be used by real-world commu-
nity repositories to solve a widespread problem. Mer-
cury has been incorporated into the latest versions of
TUF [47, 73], which is being integrated by Haskell [94],
OCaml [32], RubyGems [75–77], Python [45, 46], and
CoreOS [66], and is being used in production by
LEAP [49], Flynn [68], and Docker [64].

The key insight in Mercury is that the source of trust
about which versions of projects are current can be safely
shifted from developers to the repository. The reposi-
tory uses online keys to sign and distribute the latest ver-
sion numbers of projects as soon as they are updated.
Although attackers can provide clients with incorrect
version information when a repository is compromised,
Mercury uses several techniques that can limit user sus-
ceptibility to rollback attacks even in this case. The
key technique is that by always comparing the current
list of version information signed by the repository to
the previous list, these attacks are easily detected. Mer-
cury is bandwidth-efficient with respect to rollback at-
tacks because it downloads only the version numbers of
all projects (instead of metadata about all packages), and
uses delta compression [61, 62] to transmit only the dif-
ferences between previous and current lists. While trust-
ing the repository for version numbers opens users up to
a new fast-forward attack, this can be mitigated by per-
forming additional steps when revoking the repository
key after a compromise.

In summary, our contributions are:

1. We find that existing security systems that prevent
rollback attacks incur prohibitive bandwidth costs
to do so when the number of projects, or the rate of
project updates, is high (e.g., in popular community
repositories).

2. We design and implement Mercury, a bandwidth-
efficient system that prevents rollback attacks even
though it depends on the repository to continually
indicate the latest versions of projects.

3. We evaluate the effectiveness of Mercury using re-
quests to PyPI. We find Mercury can prevent roll-

Django
Django-1.8.tar.gz

snapshot

Repository-
managed

hash
hash

hash

hash

hash

hash

offline
keys

legend package

online
keys

Developer-
managed

Metadata

Projects

Packages

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

Figure 1: How software is organized by metadata
about projects and packages on a community repository.
Repositories and developers sign these metadata in order
to prevent security attacks. See Section 2 for a detailed
explanation.

back attacks by having each user download meta-
data each month that is about 3.5% the size of an av-
erage package. Additionally, new users (or all users
following a compromise) will download metadata
48% of the size of an average package (compared
to two other systems with overheads of 1,152% and
3,092%).

2 Background

In order to better understand the design decisions be-
hind Mercury, we provide some essential background in-
formation. First, we discuss how software is managed
and distributed by community repositories. Then, we
describe metadata used in an existing security system,
TUF [47, 73], that we leverage in Mercury to protect
these repositories from security attacks.

TUF is a framework that allows repositories to build
different security models that provide varying degrees of
security and usability. In this paper, we show that TUF
has a severe performance drawback on popular commu-
nity repositories. Thus, we devised Mercury, a more effi-
cient variant of TUF that prevents rollback attacks using
significantly lower bandwidth costs. As we stated earlier,
Mercury has been incorporated into the latest versions of
TUF.

2.1 Community repositories

A community repository is a single server that hosts and
distributes third-party software. Three groups of peo-
ple interact with the repository. Administrators, who
are usually volunteers, manage the repository software
and hardware. Developers upload software to the repos-
itory, which administrators publish as soon as possible,
for users to download. Users download, validate, and

674 2017 USENIX Annual Technical Conference USENIX Association

Django project metadata file

{
 “signatures”: {
 “keyid”: “4445d918dfcf1af804b749eeee4835dccfd27c06b6828533be827473ff6343
 9f”,
 “method”: “ed25519”,
 “sig”: “190f4b6228f2f72b3cbafa3446e032c9eaed03b055acfe8a9d3c445060b47d1b3
 ccd5c1ed9a9367a53d21e1d265f453996268dfeb1f005e530a025b0676ec720”
 },
 “signed”:{
 “packages”: {
 “Django-1.7.tar.gz”: “0654407104e420508cf5be04fb85a066131df3117117dbaca09
 5e9a248949359”
 “Django-1.8.tar.gz”: “066bad42cb4c66944e7efcf7304d3d17f7b0eb222e53958cdd8
 66420d2e8b412”
 },
 "expires": "2015-03-21T00:00:00Z",
 “version”: 2
 }
}

Figure 2: An example of a project metadata file for the
repository in Figure 1, explained in Section 2.2.

install software with a package manager that may down-
load software through middlemen, such as content deliv-
ery networks (CDNs) and/or mirrors. These middlemen
allow the repository to reduce bandwidth costs.

The software uploaded by developers is organized
as follows. A developer registers a project with a
unique name, such as Django or Bcrypt. When a spe-
cific version of the software for that project is ready to
be released, the software is built into a package (e.g.,
Django-1.7.tar.gz), and the developer uploads that
package to a community repository. A project may
make multiple packages available at any time. For ex-
ample, in Figure 1, even though Django-1.8.tar.gz
may be the latest package of the Django project,
Django-1.7.tar.gz is still available to users who re-
quest it.

2.2 Project and snapshot metadata

Appropriately structured and signed metadata can be
used to prevent security attacks when a repository is
compromised [15, 47, 73]. These metadata are used by
package managers to tell whether attackers have tam-
pered with projects, or reverted projects to obsolete ver-
sions. In this paper, we focus on two types of metadata.

Project metadata is the manifest of all packages re-
leased by a project [47]. It lists the cryptographic hashes
for available packages, and includes an expiration date
as well as a version number for the metadata file it-
self. In Figure 2, version 2 of the Django project meta-
data lists the hashes for the Django-1.7.tar.gz and
Django-1.8.tar.gz packages, and an expiration date of
March 21st 2015. Developers use offline keys (or private
keys stored off the repository) to sign project metadata,
so that attackers cannot modify it without being detected.

Snapshot metadata is the manifest of all project meta-

Snapshot metadata file

{
 “signatures”: {
 “keyid”: “16a0eeb0791b6c92451fd284dd9f599e0a7dbe7f6ebea6e2d2d06c7f74aec1
 12”,
 “method”: “ed25519”,
 “sig”: “7a7e4858a2f86f740c2a9d8627df4cda92f7b4b8e600ea596ffa3623ca31b0e7b
 0e59c3bd601645e03ae5ba0581d2c31a8ce3a879d34afdf09dc3040339bfac”
 },
 “signed”:{
 “projects”: {
 “Django.json”: “1919ff5cc47994470e539169db049f61ff133538ea1b935484e9819e
 00beb9d6”
 “Bcrypt.json”: “bd162a5385407e07e0e67310d8ebc60abe759d8937bf72ad125802
 4dff6f561a”
 },
 "expires": "2014-03-29T09:44:10Z"
 }
}

Figure 3: An example of a snapshot metadata file for the
repository in Figure 1, explained in Section 2.2.

data currently available on the repository. Following
common practice in traditional repositories [15], snap-
shot metadata binds the location (e.g., relative path) of
every project metadata file to the cryptographic hash of
the file [73]. In Figure 3, the snapshot metadata file lists
the hashes for the Django and Bcrypt project metadata
files. Since packages and project metadata are contin-
ually updated (as often as every few minutes [47]) and
made available to users immediately, community reposi-
tories use online keys (or private keys stored on the repos-
itory) to sign snapshot metadata [47]. Because the snap-
shot key is stored on the repository, an attacker who com-
promises the repository can sign maliciously generated
metadata with that key. In the next few sections, we dis-
cuss how Mercury deals with this scenario.

3 Threat model

In this paper, we are concerned with a scenario where at-
tackers have compromised a community repository. Our
threat model then assumes that:

1. Attackers can compromise a running repository, and
tamper with any files and keys stored on the reposi-
tory.

2. Developers store their keys off the repository,
so that attackers cannot compromise these keys.
Project metadata, which is managed and signed by
the developers of each project, are not under the
control of the attacker.

3. Attackers have access to any file that was previously
published on the repository.

4. Attackers are aware of vulnerabilities in outdated
packages, and are able to exploit them. These vul-
nerabilities can be found by looking at security an-

USENIX Association 2017 USENIX Annual Technical Conference 675

nouncements, or changes in source code reposito-
ries such as GitHub. However, attackers do not
know of zero-day flaws in packages.

We leverage pre-existing techniques from TUF and
other software security systems to provide effective pro-
tection against a wide array of other attacks [14, 16, 17,
47, 73]. As a result, our system can recover from key
compromises [47, 73] and resist malicious man-in-the-
middle attackers or mirrors [16]. Note that these tech-
niques are orthogonal to Mercury, and do not interfere
with its evaluation.

This work focuses on rollback attacks that cause pack-
age managers to install obsolete packages containing
known vulnerabilities. A rollback attack happens when a
package manager accepts a project that is older than the
version at the last time the user visited the repository.

4 Analysis of the limitations of existing sys-
tems

A motivation for our work is that existing security sys-
tems that can be deployed on community repositories fall
short for one of two reasons. They either do not prevent
rollback attacks, or require prohibitive bandwidth costs
to defend against such attacks.

4.1 Systems that are insecure
Many of the popular community repositories use either
HTTPS or package signing (e.g., GPG or RSA) to en-
sure packages are not tampered with. This system does
prevent rollback attacks on projects already installed by
the user, because the package manager will not accept a
project metadata file with a version number lower than in
the previous copy of the file.

However, it suffers from a subtle but serious security
problem. The package manager does not know about the
version number of project metadata files for packages
that are not requested by the user. If the repository is
subsequently compromised, then attackers can execute
rollback attacks on projects yet to be installed by the
user. Hence, when an attacker compromises the reposi-
tory, they can provide package managers out-of-date ver-
sions of packages that have known vulnerabilities.

4.2 Systems that are bandwidth-inefficient
As discussed in Section 2, Mercury is a variant of
TUF [73], a security system deployed [47] by some com-
munity repositories. TUF protects users from rollback
attacks by downloading developer-signed project meta-
data for all projects. This way, if a repository is compro-
mised, the attacker cannot provide forged project meta-

data. To avoid detection, the package manager must be
given project metadata that is at least as current as the
previous project metadata downloaded by the package
manager.

This system prevents rollback attacks on projects yet
to be installed by the user, but has high bandwidth costs
in two cases. First, for any new user (i.e., a user that
has no previous project metadata), the package manager
must download all project metadata files on the reposi-
tory. This may be large since there may be tens of thou-
sands of projects and hundreds of thousands of pack-
ages. Second, projects are continually created or updated
on community repositories. Thus, returning users will
download significant amounts of metadata to update to
the latest version. As a result, this security system can
be costly. However, the bandwidth cost for TUF is low
should users need to recover from a repository compro-
mise. Since the developer signs all of the project meta-
data, it need not be revoked if an attacker controls the
repository. So, recovery from compromise is inexpen-
sive, while normal operation is costly.

While it is not used in practice, for comparison pur-
poses we also propose TUF-version, a variant of TUF
where a project developer separately signs a project-
version metadata file that simply contains the version
number of her project. Then, the package manager
downloads all project-version metadata files, but only the
project metadata file for the package to be installed. The
number of signatures is a significant cost for the project-
version metadata. Thus, as we will see later in Section 6,
this variant incurs between 37–53% of the cost of TUF,
but is still too expensive for community repositories.

5 Mercury: a new security system

To address the limitations of existing security systems,
we present Mercury, a security system for community
repositories that can prevent rollback attacks while using
a reasonable amount of bandwidth. Mercury retains se-
curity even if a potentially compromised repository signs
version information on behalf of all projects. This is due
to its slightly more complicated functionality when re-
covering from a repository compromise. Thus the “rare
case” of recovering from a compromise is less straight-
forward, but the “common case” of distributing version
information requires much less bandwidth. In this sec-
tion, we discuss how and why package managers using
Mercury will be protected from rollback attacks.

5.1 Insight: shifting trust from developers
to the repository

Existing systems (Section 4.2) are expensive because
they were designed with the assumption that there is no

676 2017 USENIX Annual Technical Conference USENIX Association

Django
Django-1.8.tar.gz

snapshot

Repository-
managed

vers
ion

version

offline
keys

legend package

online
keys

Developer-
managed

Metadata

Projects

Packages

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

hash

hash

hash

hash

Figure 4: In Mercury, the snapshot metadata binds the lo-
cation of every project metadata file to the version num-
ber instead of the hash of the file.

trusted party (e.g., hardware or administrators) on the
repository that can always correctly indicate the version
numbers of project metadata files. In the absence of this
trusted party, package managers have relied on project
metadata files signed by developers to learn about ver-
sion numbers, even though it has meant downloading all
new files.

Our key insight is that by handling key revocation in a
different manner (Section 5.3), a repository can securely
distribute the version numbers of project metadata files
in the snapshot metadata. In Mercury, the snapshot meta-
data binds the location of every project metadata file to
its version number instead of the hash of the file (as illus-
trated in Figure 4 and Figure 5). Now, the snapshot meta-
data informs the package manager not only about which
projects on the repository are new or updated, but also
gives the version numbers of their corresponding project
metadata files. By shifting the source of trust from de-
velopers to the repository, Mercury allows the package
manager to save bandwidth as long as it: (1) has access
to a previous snapshot metadata file that was signed by
the repository, and (2) always verifies the current snap-
shot metadata file as follows.

Suppose the user wishes to install a Django package.
The package manager begins by downloading the differ-
ence between the previous and current snapshot meta-
data files, sprev and scurr, respectively. Next, the package
manager must verify that the version number b of every
project metadata file in scurr is greater than or equal to
the version number a of the same project metadata file in
sprev. If this verification step passes, then it sets sprev to
scurr. Finally, the package manager downloads only the
Django project metadata file, and ensures that the ver-
sion number c in this file is indeed equal to the version
number b for this file in scurr.

There are two reasons why this saves bandwidth cost.
First, the package manager downloads only a new project
metadata file for the package to be installed, as opposed
to all new project metadata files. Second, in Mercury

Snapshot metadata file

{
 “signatures”: {
 “keyid”: “16a0eeb0791b6c92451fd284dd9f599e0a7dbe7f6ebea6e2d2d06c7f74aec1
 12”,
 “method”: “ed25519”,
 “sig”: “7a7e4858a2f86f740c2a9d8627df4cda92f7b4b8e600ea596ffa3623ca31b0e7b
 0e59c39bd601645e03ae5ba0581d2c31a8ce3a879d34afdf09dc3040339bfac”
 },
 “signed”:{
 “projects”: {
 “Django.json”: “2”
 “Bcrypt.json”: “1”
 },
 "expires": "2014-03-29T09:44:10Z"
 }
}

Figure 5: An example of a Mercury snapshot metadata
file for the repository illustrated in Figure 4. See Sec-
tion 5.1 for details.

there is a single signature (from the repository) in a snap-
shot metadata file. With TUF / TUF-version, the package
manager downloads all new or updated project / project-
version metadata files (and hence metadata about their
packages).

5.2 Security analysis

A primary strength of Mercury is that an attacker who
compromises the repository cannot rollback projects to
versions that existed before the last time the user visited
it. This is because whenever the user installs a pack-
age, the package manager always compares the current
snapshot metadata file scurr to the previous copy sprev.
The package manager would detect a rollback attack, and
refuse to install the package, if: (1) the version number b
of any project metadata file in scurr is lower than the ver-
sion number a of the same project metadata file in sprev,
or (2) the version number c of the project metadata file
for the requested package is lower than the version num-
ber b for this project metadata file in scurr.

As with existing systems [47,73], the attacker can roll-
back projects to versions that were added after the last
time the user visited the repository. However, unlike ex-
isting systems, Mercury provides a stronger method for
imposing stringent limits on these attacks (Section 5.4).

Attackers can deny the installation of packages by ex-
ecuting fast-forward attacks, where they arbitrarily in-
crease the version numbers of project metadata files in
the snapshot metadata. In a sense, fast-forward attacks
are the opposite of rollback attacks. In this attack, the
version number b of at least one project metadata file in
scurr is greater than the version number a of the same
project metadata file in sprev. However, this version num-
ber b is also greater than the actual version number c
contained within the project metadata file itself. Thus,

USENIX Association 2017 USENIX Annual Technical Conference 677

the package manager would refuse to install a package
from this project.

Fast-forward attacks are not nearly as severe a threat
as rollback attacks because they simply block a pack-
age from being installed. Since the attacker has multiple
ways to achieve the same goal (the simplest of which is
to refuse to serve anything), fast-forward attacks do not
present a major threat so long as it is possible to recover
from them securely.

5.3 Recovering from a repository compro-
mise

As discussed earlier, attackers who compromise a reposi-
tory may launch fast-forward attacks that prevent the user
from installing newer versions of existing software. This
problem can be addressed by replacing the package man-
ager’s copy of the snapshot metadata. To do so, admin-
istrators must use an offline backup [47] to restore all
project metadata and packages to a verifiable point be-
fore the compromise. Then, the online keys used to sign
snapshot metadata can be revoked and replaced with new
keys.

The process for distributing and revoking these keys
is borrowed from TUF [47, 73]. The repository signs
root-of-trust metadata using a quorum of offline keys.
The root-of-trust metadata indicates which keys can be
trusted for verifying metadata files, including snapshot
metadata files. This leads to a seamless and automatic re-
covery from fast-forward attacks after a repository com-
promise.

5.4 Securing out-of-date package man-
agers

The security of a Mercury user relies on her package
manager possessing version numbers that are relatively
recent. Users who have never visited the repository be-
fore are protected against rollback attacks by bundling
the latest root-of-trust and snapshot metadata with the
package manager. Nevertheless, a package manager us-
ing Mercury is vulnerable to rollback attacks against
software released after the last time the package man-
ager was updated. (Note that this limitation also applies
to TUF for the same reason.) To combat this, a repository
can choose to periodically sign a version of the snapshot
metadata using offline keys (see smid in Figure 6). For ex-
ample, if the repository administrator commits to signing
snapshot metadata with offline keys at least every month,
then the package manager can first retrieve that snapshot
metadata, and verify that it was signed within the last
month. Then, it verifies that all version numbers in the
snapshot metadata signed with the online keys are later
than or equal to those signed with the offline keys. This

sprev

previous
snapshot
metadata

file seen by
user 1

sprev

previous
snapshot
metadata

file seen by
user 2

smid

previous
snapshot
metadata
file on the
repository

scurr

current
snapshot
metadata
file on the
repository

Time
offline
keys

legend
online
keys

Figure 6: In order to help outdated package managers
catch up to the latest snapshot metadata signed before
the repository is compromised, administrators may peri-
odically sign a copy smid of the latest snapshot metadata
using offline keys. See Section 5.4 for details.

prevents attackers who compromised the repository from
blocking packages that were released in the last month.

However, this functionality is not used in production
by current users of Mercury. This is largely due to two
concerns. First, the management overhead of having sep-
arate keys stored securely offline was deemed high for
this use case. Second, there was some concern that the
administrator would forget to sign an update with the
offline keys within the prescribed period, and that this
would cause users to incorrectly deduce an attack was
underway. Hence, Docker [64] and Flynn [68] do not
use this feature of Mercury in their deployments.

5.5 Deleting projects from snapshot meta-
data

It is fairly common practice for community reposito-
ries to allow projects to be deleted. However, deleting
projects can make it harder for Mercury to defend against
rollback attacks. Suppose that the package manager
naively drops the version information for projects deleted
from the snapshot metadata file. This would enable an
attacker who controls the repository to reset known ver-
sion numbers. Therefore, to better secure a repository
using Mercury, projects should not be deleted from snap-
shot metadata. This is the route that Docker [64] and
Flynn [68] chose with their deployments.

5.6 Protection against malicious mirrors
Some community repositories, such as Docker [64], use
mirrors to serve metadata and packages to users, which
opens users to malicious mirrors that may be able to tam-
per with some files. Specifically, consider a scenario out-
side of our threat model, where malicious mirrors do not
have access to snapshot metadata keys, but have access
to a few keys used to sign some project metadata files.
These mirrors cannot tamper with the snapshot metadata.

678 2017 USENIX Annual Technical Conference USENIX Association

However, they can substitute a few original project meta-
data files with malicious project metadata files. These
malicious project metadata files contain version numbers
identical to original project metadata files, but point to
malicious instead of original packages. Mercury cannot
detect these substitutions, because there is only informa-
tion about the version numbers of project metadata files
in its snapshot metadata.

In order to address this problem, we propose Mercury-
hash, a variant of Mercury where the snapshot meta-
data contains both version numbers and hashes of all
project metadata files. This prevents a malicious mir-
ror from substituting project metadata files without be-
ing detected. As we will see in Section 6, this variant
incurs 7x the cost of Mercury, which may be acceptable
for community repositories where preventing this prob-
lem is important.

5.7 Implementation
Our reference implementation of Mercury is written in
Python. It includes: command-line tools [89, 90] that
help administrators and developers create, sign, and val-
idate metadata (4,661 SLOC); integration libraries that
package managers can use to download and verify meta-
data as well as packages (1,218 SLOC); unit and integra-
tion tests (6,247 SLOC); documentation such as specifi-
cations, and example metadata.

6 Evaluation of bandwidth costs

In the previous section, we discussed how Mercury is de-
signed to prevent rollback attacks, even if the repository
is compromised. In this section, we show that very same
design is also efficient with respect to bandwidth cost.
Using a log of package downloads from PyPI, the Python
community repository, we compare Mercury to existing
security systems, and answer the following questions:

1. What is the bandwidth overhead needed by each se-
curity system to prevent rollback attacks on PyPI?
(Section 6.2)

2. How does the bandwidth overhead change as the
number of projects on PyPI is varied? (Section 6.3)

3. How does the bandwidth overhead change as the
rate of project updates on PyPI is varied? (Sec-
tion 6.4)

6.1 Experimental setup
To answer these questions, we obtained an anonymized
log of package downloads from PyPI for the month be-
tween March 21st and April 19th, 2014. This log con-

tains 69,890,162 package requests by 1,175,625 users
(identified by anonymized IP addresses). These users
downloaded 46TB of packages, and the average down-
loaded package size was 660KB. We elected to use the
average downloaded package size as a basis of compari-
son for metadata overhead, because it is the average ex-
penditure when obtaining new or updated software pack-
ages. As such, it serves as a logical frame of reference in
determining whether metadata overhead is reasonable or
excessive.

To measure the cost for a package request in the down-
load log, we must know the file sizes of packages and
their corresponding metadata. To obtain package file
sizes, we copied all packages hosted on PyPI at the time
of writing. (Thus, these are approximations of the file
sizes of packages available that month.) To obtain meta-
data file sizes, we produced 10,981 releases of metadata
as follows. The first release contains snapshot, project-
version, and project metadata about all packages that
were available at the beginning of the month. Then, we
produced a new release whenever a project was created
or updated during the month. The first and last releases
describe 58,328 and 59,486 projects, respectively. When
computing the cost for a request, we compared using
compression, delta encoding [61, 62], or delta compres-
sion [41, 42], and chose the most cost-efficient method.

We compare Mercury to four security systems that
have been, or can be, deployed by community reposi-
tories (Section 4). One security system does not pre-
vent rollback attacks (Section 4.1). In many deploy-
ments of this system, used by community repositories
such as PyPI and RubyGems, developers use GPG or
RSA to sign project metadata. Thus, as a useful abbre-
viation, we will call this security system GPG/RSA. We
also compare Mercury against a variant called Mercury-
hash (Section 5.6). Finally, we compare Mercury against
TUF [47, 73] and a variant called TUF-version (Sec-
tion 4.2).

The source code and data for these
experiments are freely available at
https://theupdateframework.com/. Unfortunately,
the download log is not publicly available, because
it may inadvertently compromise the privacy of PyPI
users.

6.2 Bandwidth overhead by security sys-
tem

The initial benchmark required in our study was the
bandwidth cost for all five systems. This was measured
by looking at the cost per user. A user may incur three
different types of costs. First, a new user who just in-
stalled the PyPI package manager incurs an initial cost
to download its first copy of metadata. Second, a user

USENIX Association 2017 USENIX Annual Technical Conference 679

https://theupdateframework.com/

Initial cost Recurring cost Recovery cost
GPG/RSA 0.6KB (0.1%) 0.02KB (0.003%) N/A
Mercury 319KB (48%) 23KB (3.5%) 320KB (48%)

Mercury-hash 2.4MB (360%) 156KB (24%) 2.4MB (361%)
TUF-version 7.6MB (1,152%) 1.1MB (171%) 2.3MB (350%)

TUF 20MB (3,092%) 2.1MB (320%) 2.3MB (350%)

Table 1: The overhead for a user incurred by each se-
curity system. The user incurs an initial cost when she
contacts PyPI for the first time, a recurring cost when
she returns to an uncompromised PyPI after the month of
the download log, and a recovery cost when she returns
to PyPI after it has recovered from a compromise. The
percentages indicate the overhead relative to the average
downloaded package size.

who returns to an uncompromised PyPI incurs a recur-
ring cost to update the metadata (which is the common
case). Third, a user who returns to PyPI after it has re-
covered from a compromise incurs a recovery cost to re-
download metadata to deal with the compromise.

Table 1 lists these costs. The first column shows the
initial cost. The second column shows the recurring cost
after the month represented by our download log. We
chose this period in order to study the greatest recurring
cost that can be measured with the available data. The
third column shows the recovery cost.

If she is a new user, then GPG/RSA incurs the low-
est initial cost (0.1%) relative to the average downloaded
package size. (The cost is equal to the average size
of project metadata files available in the last release.)
This is because it downloads only the project meta-
data file for the requested package. However, the user
is left vulnerable to rollback attacks against all other
projects. Mercury incurs a larger initial cost (48%), be-
cause it must also download snapshot metadata about all
projects. However, this is a one-time cost, and protects
the user from rollback attacks against all known projects.
Mercury-hash incurs an even larger initial cost (360%),
because its snapshot metadata also contains the hashes
of all project metadata files. In contrast, TUF-version
(1,152%) and TUF (3,092%) incur significantly higher
initial costs for the same protection. This is because they
must download all project-version and project metadata,
respectively. TUF-version is still bandwidth-inefficient
compared to Mercury and even Mercury-hash, because
it downloads incompressible signatures for nearly sixty
thousand projects.

If she is returning to an uncompromised PyPI after
the month, then GPG/RSA again incurs the lowest re-
curring cost (0.003%), because it downloads only the
difference to the project metadata file for the requested
package. (This recurring cost is equal to the average
size of differences to project metadata files between the
first and last releases.) Now, Mercury incurs significantly

Total initial costs of new users
Packages 2.2TB

GPG/RSA 0.005TB (0.2%)
Mercury 0.4TB (17%)

Mercury-hash 2.8TB (125%)
TUF-version 8.9TB (396%)

TUF 23.9TB (1,067%)

Table 2: The overhead to PyPI incurred by each security
system for new users. We consider every IP address that
appears for the first time in the download log as a new
user. The percentages indicate the overhead relative to
the total size of all packages downloaded by these new
users.

less recurring cost (3.5%), because it needs to download
only the difference to snapshot metadata over the month.
Mercury-hash incurs a larger recurring cost (24%), be-
cause it needs to also download hashes in its snapshot
metadata. In contrast, TUF-version (171%) and TUF
(320%) still incur a recurring cost greater than the aver-
age downloaded package, because they must download
project-version and project metadata, respectively, about
all projects created or updated over the month.

If she is returning to PyPI after it has recovered from
a compromise, then she may incur a recovery cost for
re-downloading metadata. GPG/RSA does not have a
recovery cost (N/A), because there is no recovery pro-
cedure to reset the version numbers of projects after a
repository compromise. On the other hand, Mercury
has a recovery cost (48%) that is dominated by snapshot
metadata (for the reason explained in Section 5.3). Simi-
larly, the recovery cost (350%) for TUF-version and TUF
are dominated by snapshot metadata. The snapshot meta-
data in both systems is always a few times larger than in
Mercury, because it lists random hashes, instead of ver-
sion numbers. However, note that, in this instance, the
recovery cost for Mercury-hash is the largest, because
its snapshot metadata contains both hashes and version
numbers.

Finally, for the sake of completeness, we also look at
the cost to PyPI incurred by “new” users in this month,
or users who appear for the first time in our download
log. We do not have ground truth about the number of
new versus returning users, since that information can-
not be determined from our download log. However, we
can get a conservative estimate of this size, by assum-
ing all users are new. While this may overestimate the
cost to PyPI in this month, this is accurate for many vir-
tualized environments, such as continuous integration /
deployment systems. Table 2 lists these costs. New users
downloaded 2.2TB of packages, and GPG/RSA adds to
this an overhead of 0.005TB (0.2%) in project metadata.
Mercury and Mercury-hash add an overhead of 0.4TB
(17%) and 2.8TB (125%), mostly due to snapshot meta-

680 2017 USENIX Annual Technical Conference USENIX Association

32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K
Number of projects

100B

1KB

10KB

100KB

1MB

10MB

100MB

Ba
nd

w
id

th
 c

os
t

Initial cost as number of projects is varied
TUF
TUF-version
Mercury-hash
Mercury
GPG/RSA
Average downloaded package size
Actual number of projects at end of month

Figure 7: The initial cost for a user incurred by each se-
curity system, depending on the number of projects. The
dashed lines show the regression lines based on the ob-
served data (points) for each system. The horizontal line
marks the average downloaded package size, whereas the
vertical line marks the actual number of projects on PyPI
at the end of the month. Points on the x and y axes have
been plotted on the log-2 and log-10 scales, respectively.

data. TUF-version adds an overhead of 8.9TB (396%),
more than two-thirds of which is due to project version
metadata. TUF adds an overhead of 23.9TB (1,067%),
eighty-nine percent of which is due to project metadata.
It is fair to conclude that it is not practical for commu-
nity repositories to deploy TUF, or even TUF-version,
especially when Mercury, and even Mercury-hash, can
prevent rollback attacks just as well, but at a fraction of
the cost.

6.3 Bandwidth versus number of projects
This subsection focuses on how the bandwidth costs
would vary for a repository that has fewer or more
projects than PyPI did at the end of the month. To an-
swer this, we looked at how the initial cost for a new
user would change as the number of projects in the last
release (which contains the largest number of projects)
is varied. (We focused on this cost because changing
the number of projects on the repository would affect
new users the most.) To study the cost if the number of
projects is smaller than in the last release, we produced
a new release based on a random sample of projects. On
the other hand, to study the cost if the number of projects
is larger than in the last release, we used linear regres-
sion to extrapolate the costs for this number based on the
costs for smaller numbers of projects.

Figure 7 shows these costs. The vertical line marks the
number of projects at the end of the month. The band-

2¡10 2¡9 2¡8 2¡7 2¡6 2¡5 2¡4 2¡3 2¡2 2¡1 1 2 4

The average number of projects updated per minute

100B

1KB

10KB

100KB

1MB

10MB

100MB

Ba
nd

w
id

th
 c

os
t

Recurring cost as rate of project updates is varied
TUF
TUF-version
Mercury-hash
Mercury
GPG/RSA
Average downloaded package size
Actual rate of updates over the month

Figure 8: The recurring cost for a user incurred by each
security system, if she returns to an uncompromised PyPI
after the month of the download log, depending on the
rate of project updates. The dashed lines show the regres-
sion lines based on the observed data (points) for each
system. The horizontal line marks the average down-
loaded package size, whereas the vertical line marks the
actual rate of project updates on PyPI over the month.
Points on the x and y axes have been plotted on the log-2
and log-10 scales, respectively. Note that GPG/RSA is
not represented in this figure, because its average recur-
ring cost is effectively zero, since most projects were not
updated during that month.

width overhead at that number of projects for all security
systems is similar to the first column of Table 1. The
horizontal line marks the average downloaded package
size.

The initial cost for GPG/RSA changes little as the
number of projects is varied, because its cost depends
only on the size of the average project metadata file.
In contrast, the initial costs for Mercury, Mercury-hash,
TUF-version, and TUF grow linearly with the number of
projects. With Mercury, this cost is dominated by the
snapshot metadata. It outgrows the average downloaded
package if the number of projects on PyPI grows larger
by more than 4x (256K). The cost for Mercury-hash is
also dominated by the snapshot metadata. However, it
outgrows the average downloaded package if the number
of projects on PyPI is nearly 3.4x smaller (17K).

Unlike Mercury, the costs for TUF-version and TUF
are dominated by project-version and project metadata
files, respectively. In fact, the cost for TUF-version is al-
ready greater than the average downloaded package if the
number of projects on PyPI is nearly 12x smaller (5K),
and for TUF if this number is more than 29x smaller
(2K).

USENIX Association 2017 USENIX Annual Technical Conference 681

6.4 Bandwidth versus rate of project up-
dates

This last subsection focuses on how the bandwidth costs
would vary for a repository that has a lower or higher
rate of project updates than PyPI did over the month. To
answer this, we looked at how the recurring cost for a re-
turning user would change as the rate of project updates
varies between the beginning and end of the month. (We
focused on this cost because changing this rate would
principally affect users who are returning to an uncom-
promised repository.) Between these two points, 3,612
projects were created or updated 10,980 times. To study
the cost if this rate is decreased, we artificially decreased
it by increasing the time interval between the first and any
subsequent release. For example, say that there are only
three releases, and that the second and last releases were
produced n and 2n minutes, respectively, after the first re-
lease. Since we assume that this user returns to the repos-
itory at the end of the month (say, at 2n+1 minutes), her
security system would download metadata from the last
release. To artificially slow down the rate of project up-
dates by half, the second and last releases would arrive 2n
and 4n minutes, respectively, after the first release. Now,
her security system would download metadata from the
second release instead of the last one. On the other hand,
to study the cost if this rate is increased, we used linear
regression to extrapolate the costs for larger rates based
on the costs for smaller rates.

Figure 8 shows these costs. The vertical line marks
the actual rate of project updates at the end of the month
(2−2 projects per minute, or a project every 4 minutes).
The bandwidth overhead then for all security systems is
identical to the second column of Table 1. The horizontal
line marks the average downloaded package size. Note
that GPG/RSA is not represented in this figure, because
its average recurring cost is effectively zero, since most
projects were not updated during that month.

When the rate of project updates is varied, the cost for
Mercury and Mercury-hash are determined by the dif-
ferences to snapshot metadata as projects are created or
updated. However, the cost for Mercury remains well
under the average downloaded package even if the rate
of project updates is 16x higher than on PyPI (4 projects
per minute, or 16 projects every 4 minutes). The cost
for Mercury-hash is only greater than the average down-
loaded package when the rate of project updates is nearly
5.7x higher than on PyPI (1.4 projects per minute, or 5.6
projects every 4 minutes). In contrast, the cost for TUF-
version is already greater than the average downloaded
package when the rate of project updates is 2x lower than
on PyPI (2−3 projects per minute, or a project every 8
minutes), and for TUF when this rate is 4x lower (2−4

projects per minute, or a project every 16 minutes).

7 Related work

In this section, we survey some prior work that is related
to Mercury.

Accountability systems. Accountability systems,
such as PeerReview [37], CATS [95], and Cloud-
Proof [67], provide a way to detect a subclass of Byzan-
tine failures in distributed systems. All of these systems
can detect rollback attacks after they happen, but, unlike
Mercury, they are not designed to prevent such attacks
before they occur.

Security systems for software repositories. Previous
work have shown software updaters to be prone to secu-
rity problems such as rollback attacks [5, 15]. Popular
Linux package managers use a security architecture that
protects against malicious mirrors or CDNs [15]. But,
unlike Mercury, it will not necessarily withstand a com-
promise of the original repository [47, 73].

Revere [53] uses a self-organizing, peer-to-peer (P2P)
overlay network to deliver security updates. However, a
P2P setup would increase the complexity of deploying a
community repository, and as such, was deemed imprac-
tical by the administrators we have been working with.
Since Mercury does not require a P2P setup, it is an eas-
ier system to put in place.

File systems for untrusted storage servers. In this
subsection, we will discuss a number of file systems that
are inherently designed to detect whether attackers have
tampered with packages. The biggest difference is that
Mercury is not a file system, which means that reposito-
ries are free to use any file system that they like. Mercury
works on top of existing file systems, and requires repos-
itories only to add a layer of signed metadata, and modi-
fying package managers to verify these metadata before
installing packages.

ECFS [6] and TCFS [19], both of which are based on
the Cryptographic File System (CFS) [7], allow devel-
opers to share files with users by offering the option of
not encrypting files. However, ECFS does not appear to
prevent rollback attacks on files not yet read by the user,
whereas TCFS does not prevent rollback attacks at all,
because unencrypted files are not protected with digital
signatures. By providing security without the need to en-
crypt, Mercury offers a more accessible alternative.

To guarantee freshness, SiRiUS [35] requires every
project developer to sign a hash tree of metadata files.
This signature expires quickly, and so a software agent
acting on behalf of the developer must renew it every
few seconds or minutes. Unfortunately, this would not
work on community repositories that provide rarely up-
dated projects which are still heavily used, but no longer
actively maintained by developers [47]. Unlike SiRiUS,
Mercury does not require developers to quickly renew
signatures on project metadata.

682 2017 USENIX Annual Technical Conference USENIX Association

SNAD [60] can prevent rollback attacks against all
projects by using a certificate object, which serves a sim-
ilar purpose to the snapshot metadata in Mercury. How-
ever, SNAD is computationally expensive for community
repositories, because all files must be encrypted, even
though these repositories have no need for encryption.

The Protected File System (PFS) [84] records hashes
of file blocks, where each hash is parameterized not only
with the file block itself, but also a secret key kept on
trusted storage. This prevents attackers from tampering
with blocks. However, like Iris [83], PFS assumes that
both developers and users would share the same secret
key to read and write files. Sharing this secret key only
makes sense when the users share the same computer,
as in PFS, or the same organization, as in Iris. Mer-
cury does not require developers or users to share a secret
key, which means that they do not have to share the same
computer or organization.

Security systems with different trust assumptions.
SUNDR [51, 57] is a file system designed for software
repositories. Unlike Mercury, SUNDR can prevent roll-
back attacks as well as detect forking attacks [8–12, 78]
despite using a single untrusted server. However, the
price of this is that SUNDR requires clients to trust that
other clients would honestly report whether the reposi-
tory has performed a forking attack. The problem is that
a single faulty or malicious client could accidentally or
deliberately frame an honest repository.

Depot [55] is a file system that eliminates trust for
safety, and minimizes trust for liveness and availability.
Unlike Mercury, Depot not only detects forking attacks,
but can continue functioning despite these attacks. How-
ever, the price is potentially high bandwidth costs, be-
cause Depot is essentially a replication protocol that re-
quires clients to continually exchange updates about all
read and write operations with servers or other clients.

In the most popular method used in file systems to pro-
vide file integrity, a trusted party signs a Merkle hash
tree [58] over a set of files [27,29,30,35,39,40,56,65,83,
92]. Unfortunately, there is no such trusted party on com-
munity repositories. Community repositories must use
online keys instead to sign the root of this tree, because
packages are continually updated, and must be published
as soon as possible (Section 2.2). Unfortunately, attack-
ers who compromise the repository can use these online
keys to sign new hash trees that point to obsolete project
metadata files. Mercury does not use hash trees, and ad-
dresses this problem by distributing version numbers of
all project metadata files using the snapshot metadata,
which help to prevent rollback attacks.

Other systems, such as Proof of Freshness [92],
A2M [20], and TrInc [50], assume that there is trusted
hardware (such as a Trusted Platform Module [91]
chip). Unfortunately, except in limited settings [85], such

trusted hardware is generally not available on commod-
ity cloud servers that community repositories may use to
host packages [1]. Mercury does not need trusted hard-
ware, which greatly increases where it can be deployed.

Byzantine fault-tolerant security systems. Byzan-
tine fault-tolerant (BFT) systems use many replicas in-
stead of a single server to execute operations [18, 26, 38,
43,52,74,79]. Unfortunately, PBFT requires administra-
tors to manage 3 f + 1 independent replicas instead of a
single server [48], where f is the maximum number of
repositories whose compromise can be tolerated. This
significantly increases administrative burden. Mercury
can work using only a single server, making it less ex-
pensive, and more easily deployable.

8 Conclusions

As community repositories continue to grow in popu-
larity, so does the need for reliable and economically-
feasible security systems to protect users from a number
of possible attacks. Solutions that require developers to
indicate the latest version number are too costly to be
used in practice. In this paper, we present Mercury, a
security system that instead uses the community repos-
itory to indicate the latest version numbers of projects.
Although attackers can compromise the repository, Mer-
cury always prevents rollback attacks, and its recov-
ery mechanism helps users recover from fast-forward at-
tacks. Using a key on the repository to sign the version
number for every project allows Mercury to efficiently
use bandwidth to prevent rollback attacks.

The Mercury source code and stan-
dards documents are freely available at
https://theupdateframework.com/.

Acknowledgements

We thank our shepherd, Eric Eide, and the anonymous re-
viewers for their valuable comments. We would also like
to thank Lois Anne DeLong for her efforts on this paper,
as well as the Docker, CoreOS, Flynn, Haskell, LEAP,
OCaml, Python, Ruby, and Square communities for their
collaboration. Our work on Mercury was supported by
U.S. National Science Foundation grants CNS-1345049
and CNS-0959138.

References

[1] ACHEMLAL, M., GHAROUT, S., AND GABER, C.
Trusted Platform Module as an Enabler for Secu-
rity in Cloud Computing. In Network and Informa-
tion Systems Security (SAR-SSI), 2011 Conference
on (May 2011), pp. 1–6.

USENIX Association 2017 USENIX Annual Technical Conference 683

https://theupdateframework.com/

[2] APACHE INFRASTRUCTURE TEAM.
apache.org incident report for 8/28/2009.
https://blogs.apache.org/infra/entry/
apache org downtime report, 2009.

[3] APACHE INFRASTRUCTURE TEAM.
apache.org incident report for 04/09/2010.
https://blogs.apache.org/infra/entry/
apache org 04 09 2010, 2010.

[4] ARKIN, B. Adobe to Revoke Code Sign-
ing Certificate. https://blogs.adobe.com/
conversations/2012/09/adobe-to-revoke-
code-signing-certificate.html, 2012.

[5] BELLISSIMO, A., BURGESS, J., AND FU, K. Se-
cure Software Updates: Disappointments and New
Challenges. In Proceedings of the 1st USENIX
Workshop on Hot Topics in Security (Berkeley, CA,
USA, 2006), HOTSEC’06, USENIX Association,
pp. 7–7.

[6] BINDEL, D., CHEW, M., AND WELLS, C.
Extended Cryptographic File System, 1999.
Unpublished. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.22.4339.

[7] BLAZE, M. A Cryptographic File System for
UNIX. In Proceedings of the 1st ACM Conference
on Computer and Communications Security (New
York, NY, USA, 1993), CCS ’93, ACM, pp. 9–16.

[8] CACHIN, C., AND GEISLER, M. Applied Cryp-
tography and Network Security: 7th International
Conference, ACNS 2009, Paris-Rocquencourt,
France, June 2-5, 2009. Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2009, ch. In-
tegrity Protection for Revision Control, pp. 382–
399.

[9] CACHIN, C., KEIDAR, I., AND SHRAER, A. Fork
sequential consistency is blocking. Information
Processing Letters 109, 7 (2009), 360–364.

[10] CACHIN, C., KEIDAR, I., AND SHRAER, A. Fail-
Aware Untrusted Storage. SIAM Journal on Com-
puting 40, 2 (2011), 493–533.

[11] CACHIN, C., AND OHRIMENKO, O. Principles
of Distributed Systems: 18th International Con-
ference, OPODIS 2014, Cortina d’Ampezzo, Italy,
December 16-19, 2014. Proceedings. Springer In-
ternational Publishing, Cham, 2014, ch. Verifying
the Consistency of Remote Untrusted Services with
Commutative Operations, pp. 1–16.

[12] CACHIN, C., SHELAT, A., AND SHRAER, A. Effi-
cient Fork-linearizable Access to Untrusted Shared
Memory. In Proceedings of the Twenty-sixth An-
nual ACM Symposium on Principles of Distributed
Computing (New York, NY, USA, 2007), PODC
’07, ACM, pp. 129–138.

[13] CAPPOS, J. Avoiding Theoretical Optimality to
Efficiently and Privately Retrieve Security Up-
dates. In Financial Cryptography and Data Se-
curity: 17th International Conference, FC 2013,
Okinawa, Japan, April 1-5, 2013, Revised Selected
Papers (Berlin, Heidelberg, 2013), A.-R. Sadeghi,
Ed., Springer Berlin Heidelberg, pp. 386–394.

[14] CAPPOS, J., BAKER, S., PLICHTA, J., NYUGEN,
D., HARDIES, J., BORGARD, M., JOHNSTON, J.,
AND HARTMAN, J. H. Stork: package manage-
ment for distributed VM environments. In The 21st
Large Installation System Administration Confer-
ence, LISA’07 (2007).

[15] CAPPOS, J., SAMUEL, J., BAKER, S., AND
HARTMAN, J. H. A look in the mirror: Attacks on
package managers. In Proceedings of the 15th ACM
conference on Computer and communications se-
curity (2008), ACM, pp. 565–574.

[16] CAPPOS, J., SAMUEL, J., BAKER, S., AND
HARTMAN, J. H. Package management security.
Tech. Rep. TR-08-02, University of Arizona, 2008.

[17] CAPPPOS, J. Stork: Secure Package Management
for VM Environments. Dissertation, University of
Arizona, 2008.

[18] CASTRO, M., AND LISKOV, B. Practical Byzan-
tine Fault Tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Im-
plementation (Berkeley, CA, USA, 1999), OSDI
’99, USENIX Association, pp. 173–186.

[19] CATTANEO, G., CATUOGNO, L., SORBO, A. D.,
AND PERSIANO, P. The Design and Implemen-
tation of a Transparent Cryptographic File Sys-
tem for UNIX. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference
(Berkeley, CA, USA, 2001), USENIX Association,
pp. 199–212.

[20] CHUN, B.-G., MANIATIS, P., SHENKER, S., AND
KUBIATOWICZ, J. Attested Append-only Memory:
Making Adversaries Stick to Their Word. In Pro-
ceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles (New York, NY,
USA, 2007), SOSP ’07, ACM, pp. 189–204.

684 2017 USENIX Annual Technical Conference USENIX Association

https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_downtime_report
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.apache.org/infra/entry/apache_org_04_09_2010
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
https://blogs.adobe.com/conversations/2012/09/adobe-to-revoke-code-signing-certificate.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4339
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.4339

[21] CORBET, J. An attempt to backdoor the kernel.
http://lwn.net/Articles/57135/, 2003.

[22] CORBET, J. The cracking of kernel.org. http:
//www.linuxfoundation.org/news-media/
blogs/browse/2011/08/cracking-kernelorg,
2011.

[23] DEBIAN. Debian Investigation Report after Server
Compromises. https://www.debian.org/News/
2003/20031202, 2003.

[24] DEBIAN. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012, 2012.

[25] DOCKER INC. Docker Hub. https://
hub.docker.com/.

[26] DOUCEUR, J. R., AND WATTENHOFER, R. P. Op-
timizing file availability in a secure serverless dis-
tributed file system. In Proceedings of the 20th
IEEE Symposium on Reliable Distributed Systems
(2001), pp. 4–13.

[27] DUCHAMP, D. A Toolkit Approach to Partially
Connected Operation. In Proceedings of the Annual
Conference on USENIX Annual Technical Confer-
ence (Berkeley, CA, USA, 1997), USENIX Asso-
ciation, pp. 23–23.

[28] FRIELDS, P. W. Infrastructure report, 2008-
08-22 UTC 1200. https://www.redhat.com/
archives/fedora-announce-list/2008-
August/msg00012.html, 2008.

[29] FU, K., KAASHOEK, M. F., AND MAZIÈRES, D.
Fast and Secure Distributed Read-only File Sys-
tem. In Proceedings of the 4th Conference on
Symposium on Operating System Design & Imple-
mentation - Volume 4 (Berkeley, CA, USA, 2000),
OSDI’00, USENIX Association.

[30] FU, K. E. Group sharing and random access in
cryptographic storage file systems. Master’s thesis,
Massachusetts Institute of Technology, 1999.

[31] GENTOO LINUX. rsync.gentoo.org: rotation server
compromised. https://security.gentoo.org/
glsa/200312-01, 2003.

[32] GESBERT, L., AND MEHNERT, H. Signing
the OPAM repository. https://opam.ocaml.org/
blog/Signing-the-opam-repository/, 2015.

[33] GITHUB, INC. Public Key Security Vulnerability
and Mitigation. https://github.com/blog/
1068-public-key-security-vulnerability-
and-mitigation, 2012.

[34] GNU SAVANNAH. Compromise2010.
https://savannah.gnu.org/maintenance/
Compromise2010/, 2010.

[35] GOH, E.-J., SHACHAM, H., MODADUGU, N.,
AND BONEH, D. SiRiUS: Securing Remote Un-
trusted Storage. In The 10th Annual Network
and Distributed System Security Symposium (San
Diego, CA, Feb. 2003), The Internet Society,
pp. 131–145.

[36] GOODIN, D. Attackers sign malware using
crypto certificate stolen from Opera Software.
http://arstechnica.com/security/2013/
06/attackers-sign-malware-using-crypto-
certificate-stolen-from-opera-software/,
2013.

[37] HAEBERLEN, A., KOUZNETSOV, P., AND DR-
USCHEL, P. PeerReview: Practical Accountabil-
ity for Distributed Systems. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles (New York, NY, USA,
2007), SOSP ’07, ACM, pp. 175–188.

[38] HO, C., VAN RENESSE, R., BICKFORD, M., AND
DOLEV, D. Nysiad: Practical Protocol Transfor-
mation to Tolerate Byzantine Failures. In Proceed-
ings of the 5th USENIX Symposium on Networked
Systems Design and Implementation (Berkeley,
CA, USA, 2008), NSDI’08, USENIX Association,
pp. 175–188.

[39] KALLAHALLA, M., RIEDEL, E., SWAMINATHAN,
R., WANG, Q., AND FU, K. Plutus: Scalable Se-
cure File Sharing on Untrusted Storage. In Pro-
ceedings of the 2Nd USENIX Conference on File
and Storage Technologies (Berkeley, CA, USA,
2003), FAST ’03, USENIX Association, pp. 29–42.

[40] KEYBASE. Introducing the Keybase filesystem,
2016. https://keybase.io/docs/kbfs.

[41] KORN, D., MACDONALD, J., MOGUL, J., AND
VO, K. The VCDIFF Generic Differencing and
Compression Data Format. RFC 3284 (Pro-
posed Standard). https://tools.ietf.org/html/
rfc3284, June 2002.

[42] KORN, D. G., AND VO, K.-P. A Generic Dif-
ferencing and Compression Data Format. Tech.
Rep. HA1630000-021899-02TM, AT&T Labs -
Research, February, 1999.

[43] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT,
A., AND WONG, E. Zyzzyva: Speculative Byzan-
tine Fault Tolerance. In Proceedings of Twenty-first

USENIX Association 2017 USENIX Annual Technical Conference 685

http://lwn.net/Articles/57135/
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
http://www.linuxfoundation.org/news-media/blogs/browse/2011/08/cracking-kernelorg
https://www.debian.org/News/2003/20031202
https://www.debian.org/News/2003/20031202
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://wiki.debian.org/DebianWiki/SecurityIncident2012
https://hub.docker.com/
https://hub.docker.com/
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://www.redhat.com/archives/fedora-announce-list/2008-August/msg00012.html
https://security.gentoo.org/glsa/200312-01
https://security.gentoo.org/glsa/200312-01
https://opam.ocaml.org/blog/Signing-the-opam-repository/
https://opam.ocaml.org/blog/Signing-the-opam-repository/
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://github.com/blog/1068-public-key-security-vulnerability-and-mitigation
https://savannah.gnu.org/maintenance/Compromise2010/
https://savannah.gnu.org/maintenance/Compromise2010/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
http://arstechnica.com/security/2013/06/attackers-sign-malware-using-crypto-certificate-stolen-from-opera-software/
https://keybase.io/docs/kbfs
https://tools.ietf.org/html/rfc3284
https://tools.ietf.org/html/rfc3284

ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07,
ACM, pp. 45–58.

[44] KUHN, B. M. News: IMPORTANT: In-
formation Regarding Savannah Restoration for
All Users. https://savannah.gnu.org/forum/
forum.php?forum id=2752, 2003.

[45] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND
CAPPOS, J. PEP 458 – Securing the Link from
PyPI to the End User. https://www.python.org/
dev/peps/pep-0458/, 2013.

[46] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND
CAPPOS, J. PEP 480 – Surviving a Compromise of
PyPI. https://www.python.org/dev/peps/pep-
0480/, 2014.

[47] KUPPUSAMY, T. K., TORRES-ARIAS, S., DIAZ,
V., AND CAPPOS, J. Diplomat: Using Delega-
tions to Protect Community Repositories. In 13th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16) (Santa Clara, CA,
Mar. 2016), USENIX Association, pp. 567–581.

[48] LAMPORT, L., SHOSTAK, R., AND PEASE, M.
The Byzantine Generals Problem. ACM Trans. Pro-
gram. Lang. Syst. 4, 3 (July 1982), 382–401.

[49] LEAP ENCRYPTION ACCESS PROJECT. New re-
leases for a new year - LEAP. https://leap.se/
en/2014/darkest-night, 2014.

[50] LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND
MOSCIBRODA, T. TrInc: Small Trusted Hardware
for Large Distributed Systems. In Proceedings of
the 6th USENIX Symposium on Networked Systems
Design and Implementation (Berkeley, CA, USA,
2009), NSDI’09, USENIX Association, pp. 1–14.

[51] LI, J., KROHN, M., MAZIÈRES, D., AND
SHASHA, D. Secure untrusted data repository
(SUNDR). In Proceedings of the 6th conference on
Symposium on Operating Systems Design & Imple-
mentation - Volume 6 (Berkeley, CA, USA, 2004),
OSDI’04, USENIX Association, pp. 9–9.

[52] LI, J., AND MAZIÉRES, D. Beyond One-third
Faulty Replicas in Byzantine Fault Tolerant Sys-
tems. In Proceedings of the 4th USENIX Con-
ference on Networked Systems Design and Imple-
mentation (Berkeley, CA, USA, 2007), NSDI’07,
USENIX Association.

[53] LI, J., REIHER, P., AND POPEK, G. J. Resilient
self-organizing overlay networks for security up-
date delivery. Selected Areas in Communications,
IEEE Journal on 22, 1 (2004), 189–202.

[54] MAGNUSSON, H. The PHP project and Code
Review. http://bjori.blogspot.com/2010/12/
php-project-and-code-review.html, 2010.

[55] MAHAJAN, P., SETTY, S., LEE, S., CLEMENT,
A., ALVISI, L., DAHLIN, M., AND WALFISH,
M. Depot: Cloud Storage with Minimal Trust.
ACM Trans. Comput. Syst. 29, 4 (Dec. 2011), 12:1–
12:38.

[56] MAHESHWARI, U., VINGRALEK, R., AND
SHAPIRO, W. How to Build a Trusted Database
System on Untrusted Storage. In Proceedings of the
4th Conference on Symposium on Operating Sys-
tem Design & Implementation - Volume 4 (Berke-
ley, CA, USA, 2000), OSDI’00, USENIX Associa-
tion.

[57] MAZIÈRES, D., AND SHASHA, D. Building Se-
cure File Systems out of Byzantine Storage. In
Proceedings of the Twenty-first Annual Symposium
on Principles of Distributed Computing (New York,
NY, USA, 2002), PODC ’02, ACM, pp. 108–117.

[58] MERKLE, R. A Digital Signature Based on a Con-
ventional Encryption Function. In Advances in
Cryptology — CRYPTO ’87, C. Pomerance, Ed.,
vol. 293 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 1988, pp. 369–378.

[59] MICROSOFT, INC. Flame malware collision
attack explained. http://blogs.technet.com/b/
srd/archive/2012/06/06/more-information-
about-the-digital-certificates-used-to-
sign-the-flame-malware.aspx, 2012.

[60] MILLER, E., LONG, D., FREEMAN, W., AND
REED, B. Strong security for distributed file sys-
tems. In Performance, Computing, and Communi-
cations, 2001. IEEE International Conference on.
(2001), IEEE, pp. 34–40.

[61] MOGUL, J., KRISHNAMURTHY, B., DOUGLIS,
F., FELDMANN, A., GOLAND, Y., VAN HOFF,
A., AND HELLERSTEIN, D. Delta encoding in
HTTP. RFC 3229 (Proposed Standard). https:
//tools.ietf.org/html/rfc3229, Jan. 2002.

[62] MOGUL, J. C., DOUGLIS, F., FELDMANN, A.,
AND KRISHNAMURTHY, B. Potential Benefits of
Delta Encoding and Data Compression for HTTP.
In Proceedings of the ACM SIGCOMM ’97 Confer-
ence on Applications, Technologies, Architectures,
and Protocols for Computer Communication (New
York, NY, USA, 1997), SIGCOMM ’97, ACM,
pp. 181–194.

686 2017 USENIX Annual Technical Conference USENIX Association

https://savannah.gnu.org/forum/forum.php?forum_id=2752
https://savannah.gnu.org/forum/forum.php?forum_id=2752
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0458/
https://www.python.org/dev/peps/pep-0480/
https://www.python.org/dev/peps/pep-0480/
https://leap.se/en/2014/darkest-night
https://leap.se/en/2014/darkest-night
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://bjori.blogspot.com/2010/12/php-project-and-code-review.html
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
http://blogs.technet.com/b/srd/archive/2012/06/06/more-information-about-the-digital-certificates-used-to-sign-the-flame-malware.aspx
https://tools.ietf.org/html/rfc3229
https://tools.ietf.org/html/rfc3229

[63] MULLENWEG, M. Passwords Reset.
https://wordpress.org/news/2011/06/
passwords-reset/, 2011.

[64] MÓNICA, D., AND DOCKER, INC. In-
troducing Docker Content Trust. https:
//blog.docker.com/2015/08/content-trust-
docker-1-8/, 2015.

[65] OPREA, A., AND REITER, M. K. Integrity Check-
ing in Cryptographic File Systems with Constant
Trusted Storage. In Proceedings of 16th USENIX
Security Symposium on USENIX Security Sympo-
sium (Berkeley, CA, USA, 2007), SS’07, USENIX
Association, pp. 13:1–13:16.

[66] PHILIPS, B. Evaluate The Update Frame-
work. https://github.com/appc/spec/issues/
211, 2015.

[67] POPA, R. A., LORCH, J. R., MOLNAR, D.,
WANG, H. J., AND ZHUANG, L. Enabling Secu-
rity in Cloud Storage SLAs with CloudProof. In
Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Berkeley,
CA, USA, 2011), USENIXATC’11, USENIX As-
sociation.

[68] PRIME DIRECTIVE, INC. Development - Flynn.
https://flynn.io/docs/development, 2015.

[69] PYTHON SOFTWARE FOUNDATION. PyPI - the
Python Package Index: Python Package Index.
https://pypi.python.org/pypi.

[70] RED HAT, INC. Infrastructure report, 2008-08-
22 UTC 1200. https://rhn.redhat.com/errata/
RHSA-2008-0855.html, 2008.

[71] RUBYGEMS.ORG. RubyGems.org — your com-
munity gem host. https://rubygems.org/.

[72] RUBYGEMS.ORG. Data Verification.
http://blog.rubygems.org/2013/01/31/
data-verification.html, 2013.

[73] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND
DINGLEDINE, R. Survivable key compromise in
software update systems. In Proceedings of the
17th ACM conference on Computer and communi-
cations security (2010), ACM, pp. 61–72.

[74] SCHNEIDER, F. B. Implementing Fault-tolerant
Services Using the State Machine Approach: A Tu-
torial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–
319.

[75] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 1. https://goo.gl/
XO4AHu, 2013.

[76] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 2. https://goo.gl/
yymo8z, 2013.

[77] SHAY, X., AND SQUARE, INC. Securing
RubyGems with TUF, Part 3. https://goo.gl/
pPKcgB, 2013.

[78] SHRAER, A., CACHIN, C., CIDON, A., KEI-
DAR, I., MICHALEVSKY, Y., AND SHAKET, D.
Venus: Verification for Untrusted Cloud Storage.
In Proceedings of the 2010 ACM Workshop on
Cloud Computing Security Workshop (New York,
NY, USA, 2010), CCSW ’10, ACM, pp. 19–30.

[79] SINGH, A., FONSECA, P., KUZNETSOV, P., RO-
DRIGUES, R., AND MANIATIS, P. Zeno: Even-
tually Consistent Byzantine-fault Tolerance. In
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation
(Berkeley, CA, USA, 2009), NSDI’09, USENIX
Association, pp. 169–184.

[80] SLASHDOT MEDIA. About. http:
//sourceforge.net/about.

[81] SLASHDOT MEDIA. phpMyAdmin cor-
rupted copy on Korean mirror server.
https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[82] SMITH, J. K. Security incident on Fe-
dora infrastructure on 23 Jan 2011. https:
//lists.fedoraproject.org/pipermail/
announce/2011-January/002911.html, 2011.

[83] STEFANOV, E., VAN DIJK, M., JUELS, A., AND
OPREA, A. Iris: A Scalable Cloud File System
with Efficient Integrity Checks. In Proceedings of
the 28th Annual Computer Security Applications
Conference (New York, NY, USA, 2012), ACSAC
’12, ACM, pp. 229–238.

[84] STEIN, C. A., HOWARD, J. H., AND SELTZER,
M. I. Unifying File System Protection. In Proceed-
ings of the General Track: 2001 USENIX Annual
Technical Conference (Berkeley, CA, USA, 2001),
USENIX Association, pp. 79–90.

[85] TECTONIC/COREOS, INC. Tectonic with Dis-
tributed Trusted Computing, 2016. https://
tectonic.com/trusted-computing/.

USENIX Association 2017 USENIX Annual Technical Conference 687

https://wordpress.org/news/2011/06/passwords-reset/
https://wordpress.org/news/2011/06/passwords-reset/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://blog.docker.com/2015/08/content-trust-docker-1-8/
https://github.com/appc/spec/issues/211
https://github.com/appc/spec/issues/211
https://flynn.io/docs/development
https://pypi.python.org/pypi
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rhn.redhat.com/errata/RHSA-2008-0855.html
https://rubygems.org/
http://blog.rubygems.org/2013/01/31/data-verification.html
http://blog.rubygems.org/2013/01/31/data-verification.html
https://goo.gl/XO4AHu
https://goo.gl/XO4AHu
https://goo.gl/yymo8z
https://goo.gl/yymo8z
https://goo.gl/pPKcgB
https://goo.gl/pPKcgB
http://sourceforge.net/about
http://sourceforge.net/about
https://sourceforge.net/blog/phpmyadmin-back-door/
https://sourceforge.net/blog/phpmyadmin-back-door/
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://lists.fedoraproject.org/pipermail/announce/2011-January/002911.html
https://tectonic.com/trusted-computing/
https://tectonic.com/trusted-computing/

[86] THE FREEBSD PROJECT. FreeBSD.org intru-
sion announced November 17th 2012. http://
www.freebsd.org/news/2012-compromise.html,
2012.

[87] THE PHP GROUP. php.net security no-
tice. http://www.php.net/archive/
2011.php#id2011-03-19-1, 2011.

[88] THE PHP GROUP. A further update on php.net.
http://php.net/archive/2013.php#id2013-
10-24-2, 2013.

[89] THE UPDATE FRAMEWORK. Developer Tools.
https://github.com/theupdateframework/
tuf/blob/develop/tuf/README-developer-
tools.md, 2014.

[90] THE UPDATE FRAMEWORK. Reposi-
tory Management. https://github.com/
theupdateframework/tuf/blob/develop/tuf/
README.md, 2014.

[91] TRUSTED COMPUTING GROUP. Trusted
Platform Module (TPM), 2016. https:

//www.trustedcomputinggroup.org/work-
groups/trusted-platform-module/.

[92] VAN DIJK, M., SARMENTA, L. F., O’DONNELL,
C. W., AND DEVADAS, S. Proof of freshness:
How to efficiently use an online single secure clock
to secure shared untrusted memory. Tech. Rep.
CSG Memo 496, Massachusetts Institute of Tech-
nology, 2006.

[93] VOSS, L. Newly Paranoid Maintainers.
http://blog.npmjs.org/post/80277229932/
newly-paranoid-maintainers, 2014.

[94] WELL-TYPED LLP. Improving Hackage secu-
rity. http://www.well-typed.com/blog/2015/
04/improving-hackage-security/, 2015.

[95] YUMEREFENDI, A. R., AND CHASE, J. S. Strong
Accountability for Network Storage. Trans. Stor-
age 3, 3 (Oct. 2007).

688 2017 USENIX Annual Technical Conference USENIX Association

http://www.freebsd.org/news/2012-compromise.html
http://www.freebsd.org/news/2012-compromise.html
http://www.php.net/archive/2011.php#id2011-03-19-1
http://www.php.net/archive/2011.php#id2011-03-19-1
http://php.net/archive/2013.php#id2013-10-24-2
http://php.net/archive/2013.php#id2013-10-24-2
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README-developer-tools.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://github.com/theupdateframework/tuf/blob/develop/tuf/README.md
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://www.trustedcomputinggroup.org/work-groups/trusted-platform-module/
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://blog.npmjs.org/post/80277229932/newly-paranoid-maintainers
http://www.well-typed.com/blog/2015/04/improving-hackage-security/
http://www.well-typed.com/blog/2015/04/improving-hackage-security/

	Introduction
	Background
	Community repositories
	Project and snapshot metadata

	Threat model
	Analysis of the limitations of existing systems
	Systems that are insecure
	Systems that are bandwidth-inefficient

	Mercury: a new security system
	Insight: shifting trust from developers to the repository
	Security analysis
	Recovering from a repository compromise
	Securing out-of-date package managers
	Deleting projects from snapshot metadata
	Protection against malicious mirrors
	Implementation

	Evaluation of bandwidth costs
	Experimental setup
	Bandwidth overhead by security system
	Bandwidth versus number of projects
	Bandwidth versus rate of project updates

	Related work
	Conclusions

